Since the early 1980s, there has been a steady increase in the use of nonvolatile fluorinated organic compounds for a variety of industrial and commercial applications. The industrial use of these relatively stable compounds has initiated debate over the fate of fluorochemicals in the environment and, ultimately, the bioavailability of these compounds. In this manuscript, we present quantitative results from a study of 65 human sera samples purchased from biological supply companies that provide characterization of specific organic fluorochemicals present in the sera of nonindustrially exposed humans. Summed together, the compound-specific characterization data reported here agree closely with levels of nonspeciated organic fluorine that were originally reported to be present in sera in 1970. The compound-specific method for the extraction of extremely low levels of several commercial organic fluorochemicals from sera and liver with quantitative detection by negative ion electrospray tandem mass spectrometry described represents a robust, previously undescribed approach to quantifying specific organic fluorochemicals in biological matrices.
This study was conducted to determine the earliest measurable response of primates to low-level perfluorooctanesulfonate (PFOS) exposure and to provide information to reduce uncertainty in human health risk assessment. Groups of male and female monkeys received 0, 0.03, 0.15, or 0.75 mg/kg/day potassium PFOS orally for 182 days. Recovery animals from each group, except the 0.03 mg/kg/day dose group, were monitored for one year after treatment. Significant adverse effects occurred only in the 0.75 mg/kg/day dose group and included compound-related mortality in 2 of 6 male monkeys, decreased body weights, increased liver weights, lowered serum total cholesterol, lowered triiodothyronine concentrations (without evidence of hypothyroidism), and lowered estradiol levels. Decreased serum total cholesterol occurred in the 0.75 mg/kg/day dose group at serum PFOS levels > 100 ppm. Hepatocellular hypertrophy and lipid vacuolation were present at term in the 0.75 mg/kg/day dose group. No peroxisomal (palmitoyl CoA oxidase) or cell proliferation (proliferating cell nuclear antigen immunohistochemistry) was detected. Complete reversal of clinical and hepatic effects and significant decreases in serum and liver PFOS occurred within 211 days posttreatment. Liver-to-serum PFOS ratios were comparable in all dose groups, with a range of 1:1 to 2:1. Serum concentrations associated with no adverse effects (0.15 mg/kg/day) were 82.6 +/- 25.2 ppm for males and 66.8 +/- 10.8 ppm for females. Comparison of serum PFOS concentrations associated with no adverse effect in this study to those reported in human blood samples (0.028 +/- 0.014 ppm) indicated an adequate margin of safety.
Perfluorooctanesulfonyl fluoride-based products have included surfactants, paper and packaging treatments, and surface protectants (e.g., for carpet, upholstery, textile). Depending on the specific functional derivatization or degree of polymerization, such products may degrade or metabolize, to an undetermined degree, to perfluorooctanesulfonate (PFOS), a stable and persistent end product that has the potential to bioaccumulate. In this investigation, a total of 645 adult donor serum samples from six American Red Cross blood collection centers were analyzed for PFOS and six other fluorochemicals using HPLC-electrospray tandem mass spectrometry. PFOS concentrations ranged from the lower limit of quantitation
Perfluorooctane sulfonate (PFOS) is a perfluorinated molecule that has recently been identified in the sera of nonindustrially exposed humans. In this study, 247 tissue samples from 15 species of marine mammals collected from Florida, California, and Alaskan coastal waters; and northern Baltic Sea; the Arctic (Spitsbergen); and Sable Island in Canada were analyzed for PFOS. PFOS was detected in liver and blood of marine mammals from most locations including those from Arctic waters. The greatest concentrations of PFOS found in liver and blood were 1520 ng/g wet wt in a bottlenose dolphin from Sarasota Bay, FL, and 475 ng/mL in a ringed seal from the northern Baltic Sea (Bothnian Sea), respectively. No age-dependent increase in PFOS concentrations in marine mammals was observed in the samples analyzed. The occurrence of PFOS in marine mammals from the Arctic waters suggests widespread global distribution of PFOS including remote locations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.