Perfluorooctane sulfonate (PFOS) is a perfluorinated molecule that has recently been identified in the sera of nonindustrially exposed humans. In this study, 247 tissue samples from 15 species of marine mammals collected from Florida, California, and Alaskan coastal waters; and northern Baltic Sea; the Arctic (Spitsbergen); and Sable Island in Canada were analyzed for PFOS. PFOS was detected in liver and blood of marine mammals from most locations including those from Arctic waters. The greatest concentrations of PFOS found in liver and blood were 1520 ng/g wet wt in a bottlenose dolphin from Sarasota Bay, FL, and 475 ng/mL in a ringed seal from the northern Baltic Sea (Bothnian Sea), respectively. No age-dependent increase in PFOS concentrations in marine mammals was observed in the samples analyzed. The occurrence of PFOS in marine mammals from the Arctic waters suggests widespread global distribution of PFOS including remote locations.
2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is a notorious model compound of highly toxic environmental pollutants, polychlorinated dibenzo-p-dioxins (PCDDs). Their toxic effects are mediated via cytosolic aryl hydrocarbon receptor (AHR). We studied the effects of several dose levels of TCDD on developing rat bone after maternal exposure at different times of gestation and lactation in three differentially sensitive rat lines. Rat lines A, B, and C differ in their sensitivity to TCDD due to mutated AHR (Ahr(hw)) in line A and another TCDD-resistance allele (B(hw)) in line B. Line C rats have no resistance alleles. Offspring were analyzed for bone mineral density and geometry by peripheral quantitative computed tomography (pQCT) and for bone biomechanics by three-point bending at mid-diaphysis of tibia and femur and by axial loading at femoral neck. TCDD treatment resulted in bone defects, mainly in offspring of the most sensitive line C at a maternal dose of 1 microg/kg. They included decreased bone length, cross-sectional area of cortex, and bone mineral density. Mechanical testing revealed significantly reduced bending breaking force and stiffness of tibia, femur, and femoral neck. The effects were exposure time-dependent, and earlier exposure caused more severe defects. Gestational exposure alone was not sufficient, but lactational exposure was required to cause the bone defects. Most of the defects were recovered at the age of 1 year. The results indicate that dioxins affect developing bone by interfering with bone growth and mechanical strength and that the effects are mainly reversible. The dioxin-resistance alleles, Ahr(hw) and B(hw) increase the resistance to these defects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.