Rhodococcus sp. RHA1 (RHA1) is a potent polychlorinated biphenyl-degrading soil actinomycete that catabolizes a wide range of compounds and represents a genus of considerable industrial interest. RHA1 has one of the largest bacterial genomes sequenced to date, comprising 9,702,737 bp (67% G؉C) arranged in a linear chromosome and three linear plasmids. A targeted insertion methodology was developed to determine the telomeric sequences. RHA1's 9,145 predicted protein-encoding genes are exceptionally rich in oxygenases (203) and ligases (192). Many of the oxygenases occur in the numerous pathways predicted to degrade aromatic compounds (30) or steroids (4). RHA1 also contains 24 nonribosomal peptide synthase genes, six of which exceed 25 kbp, and seven polyketide synthase genes, providing evidence that rhodococci harbor an extensive secondary metabolism. Among sequenced genomes, RHA1 is most similar to those of nocardial and mycobacterial strains. The genome contains few recent gene duplications. Moreover, three different analyses indicate that RHA1 has acquired fewer genes by recent horizontal transfer than most bacteria characterized to date and far fewer than Burkholderia xenovorans LB400, whose genome size and catabolic versatility rival those of RHA1. RHA1 and LB400 thus appear to demonstrate that ecologically similar bacteria can evolve large genomes by different means. Overall, RHA1 appears to have evolved to simultaneously catabolize a diverse range of plantderived compounds in an O2-rich environment. In addition to establishing RHA1 as an important model for studying actinomycete physiology, this study provides critical insights that facilitate the exploitation of these industrially important microorganisms.biodegradation ͉ actinomycete ͉ linear chromosome ͉ aromatic pathways ͉ oxygenase
Groundwater is an important source of drinking water in rural parts of India. Because of the increasing demand for water, it is essential to identify new sources for the sustainable development of this resource. The potential mapping and exploration of groundwater resources have become a breakthrough in the field of hydrogeological research. In the present paper, a groundwater prospects map is delineated for the assessment of groundwater availability in Kar basin on basaltic terrain, using remote sensing and Geographic Information System (GIS) techniques. Various thematic layers such as geology, slope, soil, geomorphology, drainage density and rainfall are prepared using satellite data, topographic maps and field data. The ranks and weights were assigned to each thematic layer and various categories of those thematic layers using AHP technique respectively. Further, a weighted overlay analysis was performed by reclassifying them in the GIS environment to prepare the groundwater potential map of the study area. The results show that groundwater prospects map classified into three classes low, moderate and high having area 17.12%, 38.26%, 44.62%, respectively. The overlay map with the groundwater potential zones in the study area has been found to be helpful for better planning and managing the resources.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.