Este trabalho apresenta uma nova estratégia de acionamento para uma mesa de coordenadas XY, denominada de Controle Vetorial Neural, utilizando uma rede neural multicamada (RNMC) atuando como controlador adaptativo direto, cujo algoritmo de aprendizagem se baseia na minimização do erro entre o vetor de posição atualizado e o de referência. Duas estratégias de controle são mostradas. A primeira estratégia é baseada no uso de controladores de posição neurais, independentes, para cada eixo e a segunda é apresentada como principal contribuição deste trabalho e é baseada no uso do Controlador Vetorial Neural. A estratégia proposta é diferenciada dos conhecidos controladores de trajetória por não possuírem controladores independentes para cada eixo. A mesa de coordenadas XY, usada para validação, é uma estrutura de dois graus de liberdade considerada como um manipulador de eixos desacoplados. Resultados experimentais e de simulação mostram o desempenho superior do Controlador Vetorial Neural. Um menor tempo de processamento no uso de uma única rede neural é uma vantagem adicional do uso do Controlador Vetorial Neural em relação aos controladores independentes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.