SUMMARYAn ensemble-based probabilistic precipitation forecasting scheme has been developed that blends an extrapolation nowcast with a downscaled NWP forecast, known as STEPS: Short-Term Ensemble Prediction System. The uncertainties in the motion and evolution of radar-inferred precipitation fields are quantified, and the uncertainty in the evolution of the precipitation pattern is shown to be the more important. The use of ensembles allows the scheme to be used for applications that require forecasts of the probability density function of areal and temporal averages of precipitation, such as fluvial flood forecasting-a capability that has not been provided by previous probabilistic precipitation nowcast schemes. The output from a NWP forecast model is downscaled so that the small scales not represented accurately by the model are injected into the forecast using stochastic noise. This allows the scheme to better represent the distribution of precipitation rate at spatial scales finer than those adequately resolved by operational NWP. The performance of the scheme has been assessed over the month of March 2003. Performance evaluation statistics show that the scheme possesses predictive skill at lead times in excess of six hours.
[1] There are significant uncertainties inherent in precipitation forecasts and these uncertainties can be communicated to users via large ensembles that are generated using stochastic models of forecast error. The Met Office and the Australian Bureau of Meteorology developed the Short Term Ensemble Prediction System (STEPS) was developed to address these user requirements and has been operational for a number of years. The initial formulation of Bowler et al. (2006) has been revised and extended to improve the performance over large domains, to include radar observation errors, and to facilitate the combination of forecasts from a number of sources. This paper reviews the formulation of STEPS, discusses those aspects of the formulation that have proved most problematic and presents some solutions. The performance of STEPS nowcasts is evaluated using a combination of case study examples and statistical verification from the UK. Routine forecast verification demonstrates that STEPS is capable of producing near optimal blends of a rainfall nowcast and high resolution NWP forecast. It also shows that the spread of STEPS nowcast ensembles are a good predictor of the error in the control member (unperturbed) nowcast.Citation: Seed, A. W., C. E. Pierce, and K. Norman (2013), Formulation and evaluation of a scale decomposition-based stochastic precipitation nowcast scheme, Water Resour. Res., 49, 6624-6641,
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.