The vertical transport of surface water and carbon into ocean's interior, known as subduction, is one of the main mechanisms through which the ocean influences Earth's climate. New instrumental approaches have shown the occurrence of localized and intermittent subduction episodes associated with small‐scale ocean circulation features. These studies also revealed the importance of such events for the export of organic matter, the so‐called eddy‐pump. However, the transient and localized nature of episodic subduction hindered its large‐scale evaluation to date. In this work, we present an approach to detect subduction events at the scale of the Southern Ocean using measurements collected by biogeochemical autonomous floats (BGCArgo). We show how subduction events can be automatically identified as anomalies of spiciness and Apparent Oxygen Utilization (AOU) below the mixed layer. Using this methodology over more than 4,000 profiles, we detected 40 subduction events unevenly distributed across the Sothern Ocean. Events were more likely found in hot spots of eddy kinetic energy (EKE), downstream major bathymetric features. Moreover, the bio‐optical measurements provided by BGCArgo allowed measuring the amount of Particulate Organic Carbon (POC) being subducted and assessing the contribution of these events to the total downward carbon flux at 100 m (EP100). We estimated that the eddy‐pump represents less than 19% to the EP100 in the Southern Ocean, although we observed particularly strong events able to locally duplicate the EP100. This approach provides a novel perspective on where episodic subduction occurs that will be naturally improved as BGCArgo observations continue to increase.
A set of 27 global climate models from the Coupled Model Inter-comparison Project Phase 5 (CMIP5) ensemble are assessed for their performance for the purpose of making future climate projection studies in the western tropical Pacific and differences to Coupled Model Inter-comparison Project Phase 3 (CMIP3) are assessed. The CMIP5 models show some improvements upon CMIP3 in the simulation of the climate in the western tropical Pacific in the late 20th century. There are fewer CMIP5 models with very poor skill scores than in CMIP3 for some measures and a small group of the well-performing models in CMIP5 have lower biases than in an equivalent group from CMIP3. These best-performing models could be particularly informative for studying certain climate sensitivities and feedbacks in the region. There is evidence to reject one model as unsuitable for making regional climate projections in the region, and another two models unsuitable for analysis of the South Pacific Convergence Zone (SPCZ). However, while there have been improvements, many of the systematic model biases in the mean climate in CMIP3 are also present in the CMIP5 models. They are primarily related to the shape of the transition between the Indo-Pacific warm pool and equatorial cold tongue, and the associated biases in the position and orientation of the SPCZ and Inter-Tropical Convergence Zone, as well as in the spatial pattern, variability and teleconnections of the West Pacific monsoon, and the simulation of El Niño Southern Oscillation. Overall, the results show that careful interpretation and consideration of biases is required when using CMIP5 outputs for generating regional climate projections for the western tropical Pacific, particularly at the country scale, just as there was with CMIP3.
The implications of a mesoscale eddy for relevant properties of the Southern Ocean carbon cycle are examined with in situ observations. We explored carbon properties inside a large (~190 km diameter) cyclonic eddy that detached from the Subantarctic Front (SAF) south of Tasmania in March 2016. Based on remote sensing, the eddy was present for ~2 months in the Subantarctic Zone (SAZ), an important region of oceanic carbon dioxide (CO2) uptake throughout the annual cycle and carbon subduction (i.e., where mode and intermediate waters form), before it was reabsorbed into the SAF. The eddy was sampled during the middle of its life, 1 month after it spawned. Comparatively, the eddy was ~3°C colder, 0.5 practical salinity unit fresher, and less biologically productive than surrounding SAZ waters. The eddy was also richer in dissolved inorganic carbon (DIC) and had lower saturation states of aragonite and calcite than the surrounding SAZ waters. As a consequence, it was a strong source of CO2 to the atmosphere (with fluxes up to +25 mmol C m−2 d−1). Compared to the SAF waters, from which it originated, DIC concentration in the eddy was ~20 μmol kg−1 lower, indicating lateral mixing, small‐scale recirculation, or eddy stirring with lower‐DIC SAZ waters by the time the eddy was observed. As they are commonly spawned from the Antarctic Circumpolar Current, and as 50% of them decay in the SAZ (the rest being reabsorbed by the SAF‐N), these types of eddies may represent a significant south‐north transport pathway for carbon across the ACC and may alter the carbon properties of SAZ waters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.