Abstract. Superconductors have often been used to claim gravitational anomalies in the context of breakthrough propulsion. The experiments could not be reproduced by others up to now, and the theories were either shown to be wrong or are often based on difficult to prove assumptions. We will show that superconductors indeed could be used to produce non-classical gravitational fields, based on the established disagreement between theoretical prediction and measured Cooper-pair mass in Niobium. Tate et al failed to measure the Cooper-pair mass in Niobium as predicted by quantum theory. This has been discussed in the literature without any apparent solution. Based on the work from DeWitt to include gravitomagnetism in the canonical momentum of Cooper-pairs, the authors published a number of papers discussing a possibly involved gravitomagnetic field in rotating superconductors to solve Tate's measured anomaly. Although one possibility to match Tate's measurement, a number of reasons were developed by the authors over the last years to show that the gravitomagnetic field in a rotating quantum material must be different from its classical value and that Tate's result is actually the first experimental sign for it. This paper reviews the latest theoretical approaches to solve the Tate Cooper-pair anomaly based on gravitomagnetic fields in rotating superconductors.
There have been a number of claims in the literature about gravity shielding effects of superconductors and more recently on the weight reduction of superconductors passing through their critical temperature. We report several experiments to test the weight of superconductors under various conditions. First, we report tests on the weight of YBCO and BSCCO high temperature superconductors passing through their critical temperature. No anomaly was found within the equipment accuracy ruling out claimed anomalies by Rounds and Reiss. Our experiments extend the accuracy of previous measurements by two orders of magnitude. In addition, for the first time, the weight of a rotating YBCO superconductor was measured. Also in this case, no weight anomaly could be seen within the accuracy of the equipment used. In addition, also weight measurements of a BSCCO superconductor subjected to extremely-lowfrequency (ELF) radiation have been done to test a claim of weight reduction under these conditions by De Aquino, and again, no unusual behavior was found. These measurements put new important boundaries on any inertial effect connected with superconductivity -and consequently on possible space related applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.