Objective: To review the influence of physical capacity on regaining walking ability and the development of walking ability after lower limb amputation. Design: A systematic search of literature was performed. The quality of all relevant studies was evaluated according to a checklist for statistical review of general papers. Subjects: Lower limb amputees. Main measures: Physical capacity (expressed by aerobic capacity, anaerobic capacity, muscle force, flexibility and balance) and walking ability (expressed by the walking velocity and symmetry). Results: A total of 48 studies that complied with the inclusion criteria were selected. From these studies there is strong evidence for deterioration of two aspects of physical capacity (muscle strength and balance) and of two aspects of walking ability (walking velocity and symmetry) after lower limb amputation. Strong evidence was found for a relation between balance and walking ability. Conclusion: Strong evidence was only found for a relation between balance and walking ability. Evidence about a relation between other elements of physical capacity and walking ability was insufficient. Training of physical capacity as well as walking ability during rehabilitation following lower limb amputation should not be discouraged since several parameters have been shown to be reduced after amputation, although their relation to regaining walking ability and to the development of walking ability remains unclear.
About 40% of the people with traumatic or non-traumatic ABI are able to return to work after 1 or 2 years. Among those with acquired traumatic brain injury a substantial proportion of the subjects were either not able to return to their former work or unable to return permanently.
The objective of this study was to assess the effect of a passive trunk exoskeleton on functional performance for various work related tasks in healthy individuals. 18 healthy men performed 12 tasks. Functional performance in each task was assessed based on objective outcome measures and subjectively in terms of perceived task difficulty, local and general discomfort. Wearing the exoskeleton tended to increase objective performance in static forward bending, but decreased performance in tasks, such as walking, carrying and ladder climbing. A significant decrease was found in perceived task difficulty and local discomfort in the back in static forward bending, but a significant increase of perceived difficulty in several other tasks, like walking, squatting and wide standing. Especially tasks that involved hip flexion were perceived more difficult with the exoskeleton. Design improvements should include provisions to allow full range of motion of hips and trunk to increase versatility and user acceptance.
Strong evidence was found that six variables either had no association or a negative association with RTW. It is recommended to focus in rehabilitation on the factors for which weak evidence was found but that are trainable/treatable with the goal of improving the process of vocational rehabilitation.
Dual-task performance is often impaired after stroke. This may be resolved by enhancing patients’ automaticity of movement. This study sets out to test the constrained action hypothesis, which holds that automaticity of movement is enhanced by triggering an external focus (on movement effects), rather than an internal focus (on movement execution). Thirty-nine individuals with chronic, unilateral stroke performed a one-leg-stepping task with both legs in single- and dual-task conditions. Attentional focus was manipulated with instructions. Motor performance (movement speed), movement automaticity (fluency of movement), and dual-task performance (dual-task costs) were assessed. The effects of focus on movement speed, single- and dual-task movement fluency, and dual-task costs were analysed with generalized estimating equations. Results showed that, overall, single-task performance was unaffected by focus (p = .341). Regarding movement fluency, no main effects of focus were found in single- or dual-task conditions (p’s ≥ .13). However, focus by leg interactions suggested that an external focus reduced movement fluency of the paretic leg compared to an internal focus (single-task conditions: p = .068; dual-task conditions: p = .084). An external focus also tended to result in inferior dual-task performance (β = -2.38, p = .065). Finally, a near-significant interaction (β = 2.36, p = .055) suggested that dual-task performance was more constrained by patients’ attentional capacity in external focus conditions. We conclude that, compared to an internal focus, an external focus did not result in more automated movements in chronic stroke patients. Contrary to expectations, trends were found for enhanced automaticity with an internal focus. These findings might be due to patients’ strong preference to use an internal focus in daily life. Future work needs to establish the more permanent effects of learning with different attentional foci on re-automating motor control after stroke.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.