Discovery of a remnant habitable environment by the Mars Science Laboratory in the sedimentary record of Gale Crater has reinvigorated the search for evidence of martian life. In this study, we used a simulated martian mudstone material, based on data from Gale Crater, that was inoculated and cultured over several months and then dried and pressed. The simulated mudstone was analysed with a range of techniques to investigate the detectability of biosignatures. Cell counting and DNA extraction showed a diverse but low biomass microbial community that was highly dispersed. Pellets were analysed with bulk Elemental Analysis – Isotope Ratio Mass Spectrometry (EA-IRMS), high-resolution Laser-ablation Ionisation Mass Spectrometry (LIMS), Raman spectroscopy and Fourier Transform InfraRed (FTIR) spectroscopy, which are all techniques of relevance to current and future space missions. Bulk analytical techniques were unable to differentiate between inoculated samples and abiotic controls, despite total levels of organic carbon comparable with that of the martian surface. Raman spectroscopy, FTIR spectroscopy and LIMS, which are high sensitivity techniques that provide chemical information at high spatial resolution, retrieved presumptive biosignatures but these remained ambiguous and the sedimentary matrix presented challenges for all techniques. This suggests challenges for detecting definitive evidence for life, both in the simulated lacustrine environment via standard microbiological techniques and in the simulated mudstone via analytical techniques with relevance to robotic missions. Our study suggests that multiple co-incident high-sensitivity techniques that can scan the same micrometre-scale spots are required to unambiguously detect biosignatures, but the spatial coverage of these techniques needs to be high enough not to miss individual cellular-scale structures in the matrix.
Rationale Laser ablation combined with mass spectrometry forms a promising tool for chemical depth profiling of solids. At irradiations near the ablation threshold, high depth resolutions are achieved. However, at these conditions, a large fraction of ablated species is neutral and therefore invisible to the instrument. To compensate for this effect, an additional ionization step can be introduced. Methods Double‐pulse laser ablation is frequently used in material sciences to produce shallow craters. We apply double‐pulse UV femtosecond (fs) Laser Ablation Ionization Mass Spectrometry to investigate the depth profiling performance. The first pulse energy is set to gentle ablation conditions, whereas the second pulse is applied at a delay and a pulse energy promoting the highest possible ion yield. Results The experiments were performed on a Cr/Ni multi‐layered standard. For a mean ablation rate of ~3 nm/pulse (~72 nJ/pulse), a delay of ~73 ps provided optimal results. By further increasing the energy of the second pulse (5–30% higher with respect to the first pulse) an enhancement of up to 15 times the single pulse intensity was achieved. These conditions resulted in mean depth resolutions of ~37 and ~30 nm for the Cr and Ni layers, respectively. Conclusions It is demonstrated on the thin‐film standard that the double‐pulse excitation scheme substantially enhances the chemical depth profiling resolution of LIMS with respect to the single‐pulse scheme. The post‐ionization allows for extraordinarily low ablation rates and for quantitative and stoichiometric analysis of nm‐thick films/coatings.
The last decade witnessed considerable progress in the development of laser ablation/ionisation time-of-flight mass spectrometry (LI-TOFMS). The improvement of both the laser ablation ion sources employing femtosecond lasers and the method of ion coupling with the mass analyser led to highly sensitive element and isotope measurements, minimisation of matrix effects, and reduction of various fractionation effects. This improvement of instrumental performance can be attributed to the progress in laser technology and accompanying commercialisation of fs-laser systems, as well as the availability of fast electronics and data acquisition systems. Application of femtosecond laser radiation to ablate the sample causes negligible thermal effects, which in turn allows for improved resolution of chemical surface imaging and depth profiling. Following in the footsteps of its predecessor ns-LIMS, fs-LIMS, which employs fs-laser ablation ion sources, has been developed in the last two decades as an important method of chemical analysis and will continue to improve its performance in subsequent decades. This review discusses the background of fs-laser ablation, overviews the most relevant instrumentation and emphasises their performance figures, and summarizes the studies on several applications, including geochemical, semiconductor, and bio-relevant materials. Improving the chemical analysis is expected by the implementation of laser pulse sequences or pulse shaping methods and shorter laser wavelengths providing current progress in mass resolution achieved in fs-LIMS. In parallel, advancing the methods of data analysis has the potential of making this technique very attractive for 3D chemical analysis with micrometre lateral and sub-micrometre vertical resolution.
Accurate isotope ratio measurements are of high importance in various scientific fields, ranging from radio isotope geochronology of solids to studies of element isotopes fractionated by living organisms. Instrument limitations, such as unresolved isobaric inferences in the mass spectra, or cosampling of the material of interest together with the matrix material may reduce the quality of isotope measurements. Here, we describe a method for accurate isotope ratio measurements using our laser ablation ionization time-of-flight mass spectrometer (LIMS) that is designed for in situ planetary research. The method is based on chemical depth profiling that allows for identifying micrometer scale inclusions embedded in surrounding rocks with different composition inside the bulk of the sample. The data used for precise isotope measurements are improved using a spectrum cleaning procedure that ensures removal of low quality spectra. Furthermore, correlation of isotopes of an element is used to identify and reject the data points that, for example, do not belong to the species of interest. The measurements were conducted using IR femtosecond laser irradiation focused on the sample surface to a spot size of 12 μm. Material removal was conducted for a predefined number of laser shots, and time-of-flight mass spectra were recorded for each of the ablated layers. Measurements were conducted on NIST SRM 986 Ni isotope standard, trevorite mineral, and micrometer-sized inclusions embedded in aragonite. Our measurements demonstrate that element isotope ratios can be measured with accuracies and precision at the permille level, exemplified by the analysis of B, Mg, and Ni element isotopes. The method applied will be used for in situ investigation of samples on planetary surfaces, for accurate quantification of element fractionation induced by, for example, past or present life or by geochemical processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.