Agricultural practice and breeding have successfully improved fruit metabolic traits, but both face the complexity of the interplay between development, metabolism and the environment. Thus, more fundamental knowledge is needed to identify further strategies for the manipulation of fruit metabolism. Nearly two decades of post-genomics approaches involving transcriptomics, proteomics and/or metabolomics have generated a lot of information about the behaviour of fruit metabolic networks. Today, the emergence of modelling tools is providing the opportunity to turn this information into a mechanistic understanding of fruits, and ultimately to design better fruits. Since high-quality data are a key requirement in modelling, a range of must-have parameters and variables is proposed.
Karst environments are unusual because their dry, stony and shallow soils seem to be unfavorable to vegetation, and yet they are often covered with forests. How can trees survive in these environments ? Where do they find the water that allows them to survive? This study uses midday and predawn water potentials and xylem water isotopes of branches to assess tree water status and the origin of transpired water. Monitoring was conducted during the summers of 2014 and 2015 in two dissimilar plots of Mediterranean forest located in karst environments. The results show that the three monitored tree species (Abies alba Mill, Fagus sylvatica L, and Quercus ilex L.) use deep water resources present in the karst vadose zone (unsaturated zone) more intensively during drier years. Quercus ilex, a species welladapted to water stress, which grows at the drier site, uses the deep water resource very early in the summer season. Conversely, the two other species exploit the deep water resource only during severe drought. These results open up new perspectives to a better understanding of ecohydrological equilibrium and to improved water balance modeling in karst forest settings. 1-Introduction: Changes in temperature and rainfall patterns across many forest ecosystems are expected to increase the risk of drought-induced tree mortality (Allen et al. 2010). Tree resistance to drought is therefore of concern to scientists (Chaves et al. 2002; Breda et al. 2006) and stakeholders (Spies et al. 2010; Keenan 2015). To cope with drought, trees have developed various strategies at different time scales. Stomata closure is a universal process designed to limit transpiration (Limousin et al. 2010), avoid water potential drop, and prevent irreversible damage caused by embolism to the plant hydraulic system (Martin-StPaul et al. 2017). Other mechanisms that take place at longer time scales involve changes in leaf area to decrease water consumption (Limousin et al. 2009, van Hees 1997, Martin-StPaul et al. 2013). Instead of regulating water loss, trees can also take up water from groundwater when the water table is accessible (e.g.
Inter-individual variability of tree drought responses within a stand has received little attention. Here we explore whether the spatial variations in soil/subsoil properties assessed through electrical resistivity tomography (ERT) could explain variations in drought response traits among trees. We used ERT to compute the percent variation in resistivity (PVR) between dry and wet conditions as an indicator of spatial variability in total available water content. PVR was computed in two different depth ranges (0-2 and 2-5 m) for eleven Quercus ilex stools in a Mediterranean forest stand. PVR values were compared to biological traits, including tree water status (predawn water potential (Ψ)), leaf traits (δ 13 C, leaf mass area (LMA)), and canopy defoliation measured after intense drought. We found significant correlations between PVR and biological variables. For Ψ , the nature and strength of the correlations vary according to the level of drought intensity. The correlation between Ψ and PVR was positive during well-watered conditions in the upper layer (0-2 m) and during water-limited conditions in the deeper layer (2-5 m). During most severe droughts, however, the Ψ was negatively correlated with PVR in the upper layer. Trees with lower PVR in the upper layer were also associated with water use efficiency (higher δ 13 C), higher LMA, and a lower level of defoliation after extreme drought. Overall, our results indicate that local differences in soil/subsoil properties affect tree response to drought and suggest that less favorable soil/subsoil conditions (lower PVR) can lead to lower water stress during the driest period and to lower defoliation after extreme drought. Plausible explanations for this better acclimation include higher stomatal regulation and improved deep soil and subsoil water exploration by trees located in more adverse conditions. We encourage the development of ERT in ecological studies to further explore the interrelated relationships between soil/subsoil, climate, and tree functioning.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.