Zourdos, MC, Goldsmith, JA, Helms, ER, Trepeck, C, Halle, JL, Mendez, KM, Cooke, DM, Haischer, MH, Sousa, CA, Klemp, A, and Byrnes, RK. Proximity to failure and total repetitions performed in a set influences accuracy of intraset repetitions in reserve-based rating of perceived exertion. J Strength Cond Res 35(2S): S158–S165, 2021—The aim of this study was to assess the accuracy of predicting repetitions in reserve (RIR) intraset using the RIR-based rating of perceived exertion (RPE) scale. Twenty-five men (age: 25.3 ± 3.3 years, body mass: 89.0 ± 14.7 kg, height: 174.69 ± 6.7 cm, and training age: 4.7 ± 3.2 years) reported to the laboratory. Subjects performed a 1 repetition maximum (1RM) squat followed by one set to failure at 70% of 1RM. During the 70% set, subjects verbally indicated when they believed they were at a 5RPE (5RIR), 7RPE (3RIR), or 9RPE (1RIR), and then continued to failure. The difference between actual repetitions performed and participant-predicted repetitions was calculated as the RIR difference (RIRDIFF). The average load used for the 70% set was 123.10 ± 24.25 kg and the average repetitions performed were 16 ± 4. The RIRDIFF was lower (RPEs were more accurate) closer to failure (RIRDIFF at 9RPE = 2.05 ± 1.73; RIRDIFF at 7RPE = 3.65 ± 2.46; and RIRDIFF at 5RPE = 5.15 ± 2.92 repetitions). There were significant relationships between total repetitions performed and RIRDIFF at 5RPE (r = 0.65, p = 0.001) and 7RPE (r = 0.56, p = 0.004), but not at 9RPE (r = 0.01, p = 0.97). Thus, being farther from failure and performing more repetitions in a set were associated with more inaccurate predictions. Furthermore, a multiple linear regression revealed that more repetitions performed per set was a significant predictor of RIR prediction inaccuracy at the called 5 (p = 0.003) and 7 (p = 0.011) RPEs, while training age (p > 0.05) was not predictive of rating accuracy. These data indicate RIR predictions are improved during low to moderate repetition sets and when there is close proximity to failure.
Odgers, JB, Zourdos, MC, Helms, ER, Candow, DG, Dahlstrom, B, Bruno, P, and Sousa, CA. Rating of perceived exertion and velocity relationships among trained males and females in the front squat and hexagonal bar deadlift. J Strength Cond Res 35(2S): S23–S30, 2021—This study examined the accuracy of intraset rating of perceived exertion (RPE) to predict repetitions in reserve (RIR) during sets to failure at 80% of 1 repetition maximum (1RM) on the front squat and high-handle hexagonal bar deadlift (HHBD). Furthermore, the relationship between RPE and average concentric velocity (ACV) during the sets to failure was also determined. Fourteen males (29 ± 6 years, front squat relative 1RM: 1.78 ± 0.2 kg·kg−1, and HHBD relative 1RM: 3.0 ± 0.1 kg·kg−1) and 13 females (30 ± 5 years, front squat relative 1RM: 1.60 ± 0.2 kg·kg−1, and HHBD relative 1RM: 2.5 ± 0.3 kg·kg−1) visited the laboratory 3 times. The first visit tested 1RM on both exercises. During visits 2 and 3, which were performed in a counterbalanced order, subjects performed 4 sets to failure at 80% of 1RM for both exercises. During each set, subjects verbally indicated when they believed they were at “6” and “9” on the RIR-based RPE scale, and ACV was assessed during every repetition. The difference between the actual and predicted repetitions performed was recorded as the RPE difference (RPEDIFF). The RPEDIFF was significantly (p < 0.001) lower at the called 9 RPE versus the called 6 RPE in the front squat for males (9 RPE: 0.09 ± 0.19 versus 6 RPE: 0.71 ± 0.70) and females (9 RPE: 0.19 ± 0.36 versus 6 RPE: 0.86 ± 0.88) and in the HHBD for males (9 RPE: 0.25 ± 0.46 versus 6 RPE: 1.00 ± 1.12) and females (9 RPE: 0.21 ± 0.44 versus 6 RPE: 1.19 ± 1.16). Significant inverse relationships existed between RPE and ACV during both exercises (r = −0.98 to −1.00). These results indicate that well-trained males and females can gauge intraset RPE accurately during moderate repetition sets on the front squat and HHBD.
Individualisation can improve resistance training prescription. This is accomplished via monitoring or autoregulating training. Autoregulation adjusts variables at an individualised pace per performance, readiness, or recovery. Many autoregulation and monitoring methods exist; therefore, this review’s objective was to examine approaches intended to optimise adaptation. Up to July 2019, PubMed, Medline, SPORTDiscus, Scopus and CINAHL were searched. Only studies on methods of athlete monitoring useful for resistance-training regulation, or autoregulated training methods were included. Eleven monitoring and regulation themes emerged across 90 studies. Some physiological, performance, and perceptual measures correlated strongly (r ≥ 0.68) with resistance training performance. Testosterone, cortisol, catecholamines, cell-free DNA, jump height, throwing distance, barbell velocity, isometric and dynamic peak force, maximal voluntary isometric contractions, and sessional, repetitions in reserve-(RIR) based, and post-set Borg-scale ratings of perceived exertion (RPE) were strongly associated with training performance, respectively. Despite strong correlations, many physiological and performance methods are logistically restrictive or limited to lab-settings, such as blood markers, electromyography or kinetic measurements. Some practical performance tests such as jump height or throw distance may be useful, low-risk stand-ins for maximal strength tests. Performance-based individualisation of load progression, flexible training configurations, and intensity and volume modifications based on velocity and RIR-based RPE scores are practical, reliable and show preliminary utility for enhancing performance.
The aim of this study was to compare barbell kinematics and muscle patterning in bench press with different loads, but with maximum effort, in young males with resistance training experience. Ten healthy experiences strength-training males (aged 27.3±5.9 years, body mass 82.8±16.6 kg, height 1.78±0.05 m, experience 7.3±4.2 years) performed maximal effort bench presses (1–2 repetitions) with loads varying from 30%, with 10% increments until 100% of 1-RM. Muscle activity of seven muscles and barbell kinematics were measured during descending and ascending phases. Average and peak upwards lifting velocity increased, while lifting time decreases with each decreasing load. In general, the maximal activation of most muscles decreases with decreasing loads, but it was not linear. No effect of loads was shown for the biceps brachii and posterior deltoid muscles. Based upon these findings, it was concluded that maximal lifting velocity may compensate for increased loads, which may allow resistancetrained males who are both healthy or in rehabilitation to avoid heavy loads but experience similar muscle activation. By decreasing the loads, the mechanical stress decreases and time to recover is reduced. Using lower loads with maximal lifting velocity may allow athletes to increase the total volume without increasing the risk of injuries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.