Abstract-The initiation of atherosclerosis results from complex interactions of circulating factors and various cell types in the vessel wall, including endothelial cells, lymphocytes, monocytes, and smooth muscle cells (SMCs). Recent reviews highlight the role of activated endothelium and inflammatory cell recruitment in the initiation of and progression of early atherosclerosis. Yet, human autopsy studies, in vitro mechanistic studies, and in vivo correlative data suggest an important role for SMCs in the initiation of atherosclerosis. SMCs are the major producers of extracellular matrix within the vessel wall and in response to atherogenic stimuli can modify the type of matrix proteins produced. In turn, the type of matrix present can affect the lipid content of the developing plaque and the proliferative index of the cells that are adherent to it. SMCs are also capable of functions typically attributed to other cell types. Like macrophages, SMCs can express a variety of receptors for lipid uptake and can form foam-like cells, thereby participating in the early accumulation of plaque lipid. Like endothelial cells, SMCs can also express a variety of adhesion molecules such as vascular cell adhesion molecule-1 and intercellular adhesion molecule-1 to which monocytes and lymphocytes can adhere and migrate into the vessel wall. In addition, through these adhesion molecules, SMCs can also stabilize these cells against apoptosis, thus contributing to the early cellularity of the lesion. Like many cells within the developing plaque, SMCs also produce many cytokines such as PDGF, transforming growth factor-, IFN␥, and MCP-1, all of which contribute to the initiation and propagation of the inflammatory response to lipid. Recent advances in SMC-specific gene modulation have enhanced our ability to determine the role of SMCs in early atherogenesis.
Background: Rupture and erosion of advanced atherosclerotic lesions with a resultant myocardial infarction or stroke are the leading worldwide cause of death. However, we have a limited understanding of the identity, origin, and function of many cells that make up late-stage atherosclerotic lesions, as well as the mechanisms by which they control plaque stability. Methods: We conducted a comprehensive single-cell RNA sequencing of advanced human carotid endarterectomy samples and compared these with single-cell RNA sequencing from murine microdissected advanced atherosclerotic lesions with smooth muscle cell (SMC) and endothelial lineage tracing to survey all plaque cell types and rigorously determine their origin. We further used chromatin immunoprecipitation sequencing (ChIP-seq), bulk RNA sequencing, and an innovative dual lineage tracing mouse to understand the mechanism by which SMC phenotypic transitions affect lesion pathogenesis. Results: We provide evidence that SMC-specific Klf4- versus Oct4-knockout showed virtually opposite genomic signatures, and their putative target genes play an important role regulating SMC phenotypic changes. Single-cell RNA sequencing revealed remarkable similarity of transcriptomic clusters between mouse and human lesions and extensive plasticity of SMC- and endothelial cell-derived cells including 7 distinct clusters, most negative for traditional markers. In particular, SMC contributed to a Myh11 - , Lgals3 + population with a chondrocyte-like gene signature that was markedly reduced with SMC- Klf4 knockout. We observed that SMCs that activate Lgals3 compose up to two thirds of all SMC in lesions. However, initial activation of Lgals3 in these cells does not represent conversion to a terminally differentiated state, but rather represents transition of these cells to a unique stem cell marker gene–positive, extracellular matrix-remodeling, “pioneer” cell phenotype that is the first to invest within lesions and subsequently gives rise to at least 3 other SMC phenotypes within advanced lesions, including Klf4-dependent osteogenic phenotypes likely to contribute to plaque calcification and plaque destabilization. Conclusions: Taken together, these results provide evidence that SMC-derived cells within advanced mouse and human atherosclerotic lesions exhibit far greater phenotypic plasticity than generally believed, with Klf4 regulating transition to multiple phenotypes including Lgals3 + osteogenic cells likely to be detrimental for late-stage atherosclerosis plaque pathogenesis.
Thrombin has been implicated in the stimulation of smooth muscle cell (SMC) proliferation that contributes to post angioplasty restenosis. The present studies demonstrated that human a-thrombin was a potent and efficacious mitogen for cultured rat aortic SMC, stimulating an increase in 3H-thymidine incorporation, as well as an increase in cell number at 1 to 10 nM concentration. -Thrombin, which is enzymatically active but lacks fibrinogen clotting activity, stimulated SMC mitogenesis but was -10-fold less potent than a-thrombin. In contrast, D-phenylalanyl-L-propyl-L-arginyl-chloromethyl ketonea-thrombin, which lacked enzymatic activity, had no mitogenic effect. Diisopropylfluorophosphate-a-thrombin failed to stimulate mitogenesis except at concentrations having equivalent enzymatic activity as that of a-thrombin at its threshold for mitogenesis. Thus, thrombin-induced proliferation was dependent on enzymatic activity. A 14-residue peptide (SFLLRNPNDKY-EPF) corresponding to amino acids 42 through 55 of the human thrombin receptor (Vu, T. K., D. T. Hung, V. I. Wheaton, and S. R. Coughlin, 1991. Cell. 64:1057-1068) had full efficacy in stimulating SMC proliferation. Reversing the first two amino acids of this peptide abolished mitogenic activity. Northern analysis demonstrated that SMC expressed a single mRNA species that hybridized to a labeled thrombin receptor cDNA probe. These findings indicate that a-thrombin stimulates SMC proliferation via the proteolytic activation of a receptor very similar or identical to that previously identified. (J. Clin. Invest. 1993. 91:94-98.)
The diverse leukocyte infiltrate in atherosclerotic mouse aortas was recently analyzed in 9 single cell RNA-Seq (scRNA-Seq) and 2 mass cytometry (CyTOF) studies. In a comprehensive meta-analysis, we demonstrate four macrophage subsets: resident, inflammatory, IFNIC and Trem2 foamy macrophages. We also find that monocytes, neutrophils, dendritic cells, natural killer cells, innate lymphoid cells-2 (ILC2) and CD8 T cells form prominent and separate populations. The CD4 T cells show a large population of Th17-like cells, which also contain γδ T cells. A small number of Tregs and Th1 cells is also identified. The present meta-analysis overcomes limitations of individual studies that, because of their experimental approach, overor under-represent certain cell populations. CyTOF identifies an even larger number of clusters, suggesting that surface markers provide more discriminatory information than transcriptomes. The present analysis provides evidence to further resolve some long-standing controversies in the field. First, Trem2 + foamy macrophages are not pro-inflammatory, but interferon-inducible cell (IFNIC) and inflammatory macrophages are. Second, about half of all foam cells are smooth muscle cell-derived, retaining smooth muscle cell transcripts rather than transdifferentiating to macrophages. Third, Pf4, which had been considered specific for platelets and megakaryocytes, is also prominently expressed in resident vascular macrophages. Finally, the discovery of a prominent ILC2 cluster links the scRNA-Seq work to recent flow cytometry data suggesting a strong atheroprotective role of ILC2 cells. This resolves apparent discrepancies regarding the role of Th2 cells in atherosclerosis based on studies that pre-dated the discovery of ILC2 cells.
Objective: Three distinct human monocyte subsets have been identified based on the surface marker expression of CD14 and CD16. We hypothesized that monocytes were likely more heterogeneous in composition. Approach and Results: We utilized the high dimensionality of mass cytometry together with the FlowSOM clustering algorithm to accurately identify and define monocyte subsets in blood of healthy human subjects and those with coronary artery disease (CAD). In order to study the behavior and functionality of the newly defined monocyte subsets, we performed RNA sequencing, transwell migration, and efferocytosis assays. Here, we identify 8 human monocyte subsets based on their surface marker phenotype. We found that 3 of these subsets fall within the CD16+ nonclassical monocyte population and 4 subsets belong to the CD14+ classical monocytes, illustrating significant monocyte heterogeneity in humans. As nonclassical monocytes are important in modulating atherosclerosis in mice, we studied the functions of our 3 newly identified nonclassical monocytes in subjects with CAD. We found a marked expansion of a Slan+CXCR6+ nonclassical monocyte subset in CAD subjects, which was positively correlated with CAD severity. This nonclassical subset can migrate towards CXCL16 and shows an increased efferocytosis capacity, indicating it may play an athero-protective role. Conclusions: Our data demonstrates that human nonclassical monocytes are a heterogeneous population, existing of several subsets with functional differences. These subsets have changed frequencies in the setting of severe CAD. Understanding how these newly identified subsets modulate CAD will be important for CAD-based therapies that target myeloid cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.