Echinoderms have long been characterized by the presence of ambulacra that exhibit pentaradiate symmetry and define five primary body axes. In reality, truly pentaradial ambulacral symmetry is a condition derived only once in the evolutionary history of echinoderms and is restricted to eleutherozoans, the clade that contains most living echinoderm species. In contrast, early echinoderms have a bilaterally symmetrical 2-1-2 arrangement, with three ambulacra radiating from the mouth. Branching of the two side ambulacra during ontogeny produces the five adult rays. During the Cambrian Explosion and Ordovician Radiation, some 30 clades of echinoderms evolved, many of which have aberrant ambulacral systems with one to four rays. Unfortunately, no underlying model has emerged that explains ambulacral homologies among disparate forms. Here we show that most Paleozoic echinoderms are characterized by uniquely identifiable ambulacra that develop in three distinct postlarval stages. Nearly all “aberrant” echinoderm morphologies can be explained by the paedomorphic ambulacra reduction (PAR) model through the loss of some combination of these growth stages during ontogeny. Superficially similar patterns of ambulacral reduction in distantly related clades have resulted from the parallel loss of homologous ambulacra during ontogeny. Pseudo-fivefold symmetry seen in Blastoidea and the true fivefold symmetry seen in Eleutherozoa result from great reduction and total loss, respectively, of the 2–1–2 symmetry early in ontogeny. These ambulacral variations suggest that both developmental and ecological constraints affect the evolution of novel echinoderm body plans.
The distribution of all known Cambrian echinoderm taxa, encompassing both articulated specimens and taxonomically diagnostic isolated ossicles, is documented for the first time. The database described by 2011 comprises 188 species recorded from 65 formations from around the world. Formations that have yielded articulated echinoderms are unequally distributed in space and time. Only Laurentia and West Gondwana provide reasonably complete records at the resolution of Stage. The review of the biogeographical distributions of the eight major echinoderm clades shows that faunas from Laurentia and Northeast Gondwana (China and Korea) are distinct from those of West Gondwana and Southeast Gondwana (Australia); other regions are too poorly sampled to make firm palaeobiogeographical statements. Analysis of alpha diversity (species per formation) shows that diversity rose initially to Cambrian Stage 5, declined into Guzhangian and Paibian before returning to Stage 5 levels by the end of the Cambrian. This pattern is replicated in Laurentia and West Gondwana. We show that taxonomically diagnostic ossicles found in isolation typically occur significantly earlier than the first articulated specimens of the same taxa and provide important information on the first occurrence and palaeobiogeographical distribution of key taxa, and of the phylum as a whole.Supplementary material:Articulated Cambrian echinoderms and Isolated plates of Cambrian echinoderms are provided at:http://www.geolsoc.org.uk/SUP18668
The phylogenetic relationships between major groups of plesiomorphic pentaradial echinoderms, the Paleozoic crinoids, blastozoans, and edrioasteroids, are poorly understood because of a lack of widely recognized homologies. Here, we present newly recognized oral region homologies, based on the Universal Elemental Homology model for skeletal plates, in a wide range of fossil taxa. The oral region of echinoderms is mainly composed of the axial, or ambulacral, skeleton, which apparently evolved more slowly than the extraxial skeleton that forms the majority of the body. Recent phylogenetic hypotheses have focused on characters of the extraxial skeleton, which may have evolved too rapidly to preserve obvious homologies across all these groups. The axial skeleton conserved homologous suites of characters shared between various edrioasteroids and specific blastozoans, and between other blastozoans and crinoids. Although individual plates can be inferred as homologous, no directly overlapping suites of characters are shared between edrioasteroids and crinoids. Six different systems of mouth (peristome) plate organization (Peristomial Border Systems) are defined. These include four different systems based on the arrangement of the interradially-positioned oral plates and their peristomial cover plates, where PBS A1 occurs only in plesiomorphic edrioasteroids, PBS A2 occurs in plesiomorphic edrioasteroids and blastozoans, and PBS A3 and PBS A4 occur in blastozoans and crinoids. The other two systems have radially-positioned uniserial oral frame plates in construction of the mouth frame. PBS B1 has both orals and uniserial oral frame plates and occurs in edrioasterid and possibly edrioblastoid edrioasteroids, whereas PBS B2 has exclusively uniserial oral frame plates and is found in isorophid edrioasteroids and imbricate and gogiid blastozoans. These different types of mouth frame construction offer potential synapomorphies to aid in parsimony-based phylogenetics for exploring branching order among stem groups on the echinoderm tree of life.
Late Devonian to Early Carboniferous stratigraphic units within the 'Zhulumute' Formation, Honggule-leng Formation (stratotype), 'Hebukehe' Formation and the Heishantou Formation near the Boulongour Reservoir in northwestern Xinjiang are fossil-rich. The Hongguleleng and 'Hebukehe' formations are bio-stratigraphically well constrained by microfossils from the latest Frasnian linguiformis to mid-Famennian trachytera conodont biozones. The Hongguleleng Formation (96.8 m) is characterized by bioclastic argil-laceous limestones and marls (the dominant facies) intercalated with green spiculitic calcareous shales. It yields abundant and highly diverse faunas of bryozoans, brachiopods and crinoids with subordinate solitary rugose corals, ostracods, trilobites, conodonts and other fish teeth. The succeeding 'Hebukehe' Formation (95.7 m) consists of siltstones, mudstones, arenites and intervals of bioclastic limestone (e.g. 'Blastoid Hill') and cherts with radiolarians. A diverse ichnofauna, phacopid trilobites, echinoderms (crinoids and blastoids) together with brachiopods, ostracods, bryozoans and rare cephalopods have been collected from this interval. Analysis of geochemical data, microfacies and especially the distribution of marine organisms, which are not described in detail here, but used for facies analysis, indicate a deepen-ing of the depositional environment at the Boulongour Reservoir section. Results presented here concern mainly the sedimentological and stratigraphical context of the investigated section. Additionally, one Late Devonian palaeo-oceanic and biotic event, the Upper Kellwasser Event is recognized near the section base.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.