Improvements in robotics and artificial intelligence have enabled robotics to be developed for use in a nuclear environment. However, the harsh environment and dangerous nature of the tasks pose several challenges in deploying robots. There may be some unique requirements for a nuclear application that a commercial system does not meet, such as radiation effects, the needs remote maintenance and deployment constraints. This paper reviews the main challenges that robots need to face to be deployed in a nuclear environment, examines the development and assessment processes required in the nuclear industry, and highlights the assistance that is available for developers. Due to comparable environments and operating restrictions, the development process employed by the nuclear industry has a similar structure as that employed by NASA and the ESA for space exploration. The nuclear industry has introduced a number of development support programs, such as Innovate and Game Changers, to fund and mentor developers through the initial design stages to proving viability in a representative independently assessed test environment. Robust and reliable technologies, which may also have application beyond the original nuclear application, are being successfully developed and tested, enabling robotics in making nuclear operations safer and more efficient. Additional development sources are given in the text.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.