Motivated by the vast amount of information that is rapidly accumulating about the human brain in digital form, we embarked upon a program in 1992 to develop a four-dimensional probabilistic atlas and reference system for the human brain. Through an International Consortium for Brain Mapping (ICBM) a dataset is being collected that includes 7000 subjects between the ages of eighteen and ninety years and including 342 mono-and dizygotic twins. Data on each subject includes detailed demographic, clinical, behavioural and imaging information. DNA has been collected for genotyping from 5800 subjects. A component of the programme uses post-mortem tissue to determine the probabilistic distribution of microscopic cyto-and chemoarchitectural regions in the human brain. This, combined with macroscopic information about structure and function derived from subjects in vivo, provides the ¢rst large scale opportunity to gain meaningful insights into the concordance or discordance in micro-and macroscopic structure and function. The philosophy, strategy, algorithm development, data acquisition techniques and validation methods are described in this report along with database structures. Examples of results are described for the normal adult human brain as well as examples in patients with Alzheimer's disease and multiple sclerosis. The ability to quantify the variance of the human brain as a function of age in a large population of subjects for whom data is also available about their genetic composition and behaviour will allow for the ¢rst assessment of cerebral genotype^phenotype^behavioural correlations in humans to take place in a population this large. This approach and its application should provide new insights and opportunities for investigators interested in basic neuroscience, clinical diagnostics and the evaluation of neuropsychiatric disorders in patients.
The registration algorithm described is a robust and flexible tool that can be used to address a variety of image registration problems. Registration strategies can be tailored to meet different needs by optimizing tradeoffs between speed and accuracy.
After conception and implementation of any new medical image processing algorithm, validation is an important step to ensure that the procedure fulfills all requirements set forth at the initial design stage. Although the algorithm must be evaluated on real data, a comprehensive validation requires the additional use of simulated data since it is impossible to establish ground truth with in vivo data. Experiments with simulated data permit controlled evaluation over a wide range of conditions (e.g., different levels of noise, contrast, intensity artefacts, or geometric distortion). Such considerations have become increasingly important with the rapid growth of neuroimaging, i.e., computational analysis of brain structure and function using brain scanning methods such as positron emission tomography and magnetic resonance imaging. Since simple objects such as ellipsoids or parallelepipedes do not reflect the complexity of natural brain anatomy, we present the design and creation of a realistic, high-resolution, digital, volumetric phantom of the human brain. This three-dimensional digital brain phantom is made up of ten volumetric data sets that define the spatial distribution for different tissues (e.g., grey matter, white matter, muscle, skin, etc.), where voxel intensity is proportional to the fraction of tissue within the voxel. The digital brain phantom can be used to simulate tomographic images of the head. Since the contribution of each tissue type to each voxel in the brain phantom is known, it can be used as the gold standard to test analysis algorithms such as classification procedures which seek to identify the tissue "type" of each image voxel. Furthermore, since the same anatomical phantom may be used to drive simulators for different modalities, it is the ideal tool to test intermodality registration algorithms. The brain phantom and simulated MR images have been made publicly available on the Internet (http://www.bic.mni.mcgill.ca/brainweb).
Overall, the enhanced signal in the averaged images resulted in higher quality anatomical images, and the data lent themselves to several postprocessing techniques. The high quality of the enhanced images permits novel uses of the data and extends the possibilities for in vivo human neuroanatomy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.