Overall, the enhanced signal in the averaged images resulted in higher quality anatomical images, and the data lent themselves to several postprocessing techniques. The high quality of the enhanced images permits novel uses of the data and extends the possibilities for in vivo human neuroanatomy.
Aim: Many studies have suggested that physical exercise training improves cognition and more selectively executive functions. There is a growing interest to clarify the neurophysiological mechanisms that underlie this effect. The aim of the current study was to evaluate the neurophysiological changes in cerebral oxygenation associated with physical fitness level and executive functions.Method: In this study, 22 younger and 36 older women underwent a maximal graded continuous test (i.e., trueV˙O2max) in order to classify them into a fitness group (higher vs. lower fit). All participants completed neuropsychological paper and pencil testing and a computerized Stroop task (which contained executive and non-executive conditions) in which the change in prefrontal cortex oxygenation was evaluated with near infrared spectroscopy (NIRS).Results: Our findings revealed a Fitness × Condition interaction (p < 0.05) such that higher fit women scored better on measures of executive functions than lower fit women. In comparison to lower fit women, higher fit women had faster reaction times in the Executive condition of the computerized Stroop task. No significant effect was observed in the non-executive condition of the test and no interactions were found with age. In measures of cerebral oxygenation (ΔHbT and ΔHbO2), we found a main effect of fitness on cerebral oxygenation during the Stroop task such that only high fit women demonstrated a significant increase in the right inferior frontal gyrus.Discussion/Conclusion: Higher fit individuals who demonstrate better cardiorespiratory functions (as measured by trueV˙O2max) show faster reaction times and greater cerebral oxygenation in the right inferior frontal gyrus than women with lower fitness levels. The lack of interaction with age, suggests that good cardiorespiratory functions can have a positive impact on cognition, regardless of age.
Behavioral studies indicate that older adults exhibit normal motor sequence learning (MSL), but paradoxically, show impaired consolidation of the new memory trace. However, the neural and physiological mechanisms underlying this impairment are entirely unknown. Here, we sought to identify, through functional magnetic resonance imaging during MSL and electroencephalographic (EEG) recordings during daytime sleep, the functional correlates and physiological characteristics of this age-related motor memory deficit. As predicted, older subjects did not exhibit sleep-dependent gains in performance (i.e., behavioral changes that reflect consolidation) and had reduced sleep spindles compared with young subjects. Brain imaging analyses also revealed that changes in activity across the retention interval in the putamen and related brain regions were associated with sleep spindles. This change in striatal activity was increased in young subjects, but reduced by comparison in older subjects. These findings suggest that the deficit in sleep-dependent motor memory consolidation in elderly individuals is related to a reduction in sleep spindle oscillations and to an associated decrease of activity in the cortico-striatal network.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.