Tailwaters below hydropower dams can create desirable coldwater trout fisheries; however, a flow regime ideal for hydropower often presents challenges for management of the fishery. The Smith River tailwater (Henry County, VA) offers a self-sustaining brown trout fishery managed for trophy trout (! 406 mm), yet trophy-sized fish are rare. Slow growth and small size are likely caused by any one or a combination of thermal habitat, limited food resources, and/or physical habitat. To evaluate the potential for thermal habitat improvement, temperature changes resulting from alternative flows were assessed with a one-dimensional hydrodynamic model coupled with a water temperature model. Simulated temperatures from each flow scenario were assessed every 2 river kilometres over a 24 kilometre river section below the dam for occurrence of optimal growth temperatures, as well as compliance with Virginia Department of Environmental Quality hourly temperature change and daily maximum temperature standards. The occurrence of optimal growth temperatures increased up to 11.8% over existing conditions by releasing water in the morning, decreasing the duration of release, and not increasing baseflow. Incidences of hourly temperature changes greater than 2 C were reduced from 4% to 0-1.2% by non-peaking releases, increasing baseflow, morning releases, and decreasing the duration of release. Maximum temperature occurrence (>21 C) decreased from 1.3% to 0-0.1% by releasing flows daily to prevent elevated temperatures on non-generation days, increasing baseflow, increasing duration of release, and releasing in the morning rather than evening. Despite conflicting adjustments to best improve all thermal criteria concurrently, a 7-day/week, morning, one hour release regime was determined to improve all criteria throughout the tailwater compared to existing conditions.
Watershed and aquatic ecosystem management requires methods to predict and understand thermal impacts on stream habitat from urbanization. This study evaluates thermal effects of projected urbanization using a modeling framework and considers the biological implications to the fish community. The Stream Network Temperature Model (SNTEMP) was used in combination with the Hydrologic Simulation Program Fortran (HSPF) to assess changes in stream thermal habitat under altered stream‐ flow, shade, and channel width associated with low, medium, and high density urban developments in the Back Creek watershed (Roanoke County, Virginia). Flow alteration by the high density development scenario alone caused minimal heating of mean daily summer base flow (mean +0.1°C). However, when flow changes were modeled concurrently with reduced shade and increased channel width, mean daily temperature increased 1°C. Maximum daily temperatures exceeding the state standard (31°C) increased from 1.1 to 7.6 percent of the time using summer 2000 climatic conditions. Model results suggest that additional urban development will alter stream temperature, potentially limiting thermal habitat and shifting the fish community structure from intolerant to tolerant fish species in Back Creek. More research is needed on the sub‐lethal or chronic effects of increased stream temperature regimes on fish, particularly for those species already living in habitats near their upper limits.
As part of a study of aquatic faunal community changes along riverine-lacustrine transition zones upstream of Lewis Smith Reservoir in northwest Alabama, USA, we collected crayfish from 60 sites in the Sipsey Fork, Brushy Creek, and selected tributaries (Black Warrior River system). After finding two unexpected and possibly-introduced crayfish species, we expanded our investigation of crayfish distributions to include crayfish obtained from stomachs of black bass (Micropterus spp.) caught at seven sites in the reservoir. To explore what crayfish species were in the drainage historically, we examined museum databases as well as stomach and intestinal contents of a variety of preserved fishes that were caught in the Sipsey Fork and Brushy Creek drainages upstream of the reservoir in the early 1990’s. Of the seven crayfish species collected, one, Orconectes (Procericambarus) sp. nr ronaldi, was not previously reported from Alabama, and another, O. lancifer, was not reported from the Black Warrior River system prior to the study. Three are known or possibly introduced species. Upstream of the reservoir, the native species Cambarus obstipus, C. striatus, and O. validus were common. The same three species were found in fish collected in the 1990’s. Orconectes perfectus was found only in the reservoir but may be native to the drainage. Orconectes lancifer was in the reservoir and in stream reaches influenced by the reservoir. Evidence points to O. lancifer being introduced in the drainage, but this is uncertain. Orconectes sp. nr ronaldi was found in a relatively small portion of Brushy Creek and its tributaries, in both flowing and impounded habitats, and may be introduced. Orconectes virilis is introduced in Alabama and was found only in stomachs of fish collected in the reservoir.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.