CRISPR/Cas9-based therapeutics, especially those that can correct gene mutations via homology directed repair (HDR), have the potential to revolutionize the treatment of genetic diseases. However, HDR-based therapeutics are challenging to develop because they require simultaneous in vivo delivery of Cas9 protein, guide RNA and donor DNA. Here, we demonstrate that a delivery vehicle composed of gold nanoparticles conjugated to DNA and complexed with cationic endosomal disruptive polymers can deliver Cas9 ribonucleoprotein and donor DNA into a wide variety of cell types, and efficiently correct the DNA mutation that causes Duchenne muscular dystrophy in mice via local injection, with minimal off-target DNA damage.
Heterochronic blood sharing rejuvenates old tissues, and most of the studies on how this works focus on young plasma, its fractions, and a few youthful systemic candidates. However, it was not formally established that young blood is necessary for this multi-tissue rejuvenation. Here, using our recently developed small animal blood exchange process, we replaced half of the plasma in mice with saline containing 5% albumin (terming it a "neutral" age blood exchange, NBE) thus diluting the plasma factors and replenishing the albumin that would be diminished if only saline was used. Our data demonstrate that a single NBE suffices to meet or exceed the rejuvenative effects of enhancing muscle repair, reducing liver adiposity and fibrosis, and increasing hippocampal neurogenesis in old mice, all the key outcomes seen after blood heterochronicity. Comparative proteomic analysis on serum from NBE, and from a similar human clinical procedure of therapeutic plasma exchange (TPE), revealed a molecular re-setting of the systemic signaling milieu, interestingly, elevating the levels of some proteins, which broadly coordinate tissue maintenance and repair and promote immune responses. Moreover, a single TPE yielded functional blood rejuvenation, abrogating the typical old serum inhibition of progenitor cell proliferation. Ectopically added albumin does not seem to be the sole determinant of such rejuvenation, and levels of albumin do not decrease with age nor are increased by NBE/TPE. A model of action (supported by a large body of published data) is that significant dilution of autoregulatory proteins that crosstalk to multiple signaling pathways (with their own feedback loops) would, through changes in gene expression, have long-lasting molecular and functional effects that are consistent with our observations. This work improves our understanding of the systemic paradigms of multi-tissue rejuvenation and suggest a novel and immediate use of the FDA approved TPE for improving the health and resilience of older people.
The novel cytochrome P450, CYP2B19, is a specific cellular marker of late differentiation in skin keratinocytes. CYP2B19 was discovered in fetal mouse skin where its onset of expression coincides spatially (upper cell layer) and temporally (day 15.5) with the appearance of loricrin-expressing keratinocytes during the stratification stage of fetal epidermis. CYP2B19 is also present postnatally in the differentiated keratinocytes of the epidermis, sebaceous glands, and hair follicles. CYP2B19 mRNA is tightly coupled to the differentiated (granular cell) keratinocyte phenotype in vivo and in vitro. In primary mouse epidermal keratinocytes, it is specifically up-regulated and correlated temporally with calcium-induced differentiation and expression of the late differentiation genes loricrin and profilaggrin. Recombinant CYP2B19 metabolizes arachidonic acid and generates 14,15-and 11,12-epoxyeicosatrienoic (EET) acids, and 11-, 12-, and 15-hydroxyeicosatetraenoic (HETE) acids (20, 35, 18, 7, and 7% of total metabolites, respectively). Arachidonic acid metabolism was stereoselective for 11S,12R-and 14S,15R-EET, and 11S-, 12R-, and 15R-HETE. The CYP2B19 metabolites 11,12-and 14,15-EET are endogenous constituents of murine epidermis and are present in similar proportions to that generated by the enzyme in vitro, suggesting that CYP2B19 might be the primary enzymatic source of these EETs in murine epidermis.
Our recent study has established that young blood factors are not causal, nor necessary, for the systemic rejuvenation of mammalian tissues. Instead, a procedure referred to as neutral blood exchange (NBE) that resets signaling milieu to a pro-regenerative state through dilution of old plasma, enhanced the health and repair of the muscle and liver, and promoted better hippocampal neurogenesis in 2-year-old mice (Mehdipour et al., Aging 12:8790–8819, 2020). Here we expand the rejuvenative phenotypes of NBE, focusing on the brain. Namely, our results demonstrate that old mice perform much better in novel object and novel texture (whisker discrimination) tests after a single NBE, which is accompanied by reduced neuroinflammation (less-activated CD68+ microglia). Evidence against attenuation/dilution of peripheral senescence-associated secretory phenotype (SASP) as the main mechanism behind NBE was that the senolytic ABT 263 had limited effects on neuroinflammation and did not enhance hippocampal neurogenesis in the old mice. Interestingly, peripherally acting ABT 263 and NBE both diminished SA-βGal signal in the old brain, demonstrating that peripheral senescence propagates to the brain, but NBE was more robustly rejuvenative than ABT 263, suggesting that rejuvenation was not simply by reducing senescence. Explaining the mechanism of the positive effects of NBE on the brain, our comparative proteomics analysis demonstrated that dilution of old blood plasma yields an increase in the determinants of brain maintenance and repair in mice and in people. These findings confirm the paradigm of rejuvenation through dilution of age-elevated systemic factors and extrapolate it to brain health and function.
The CYP monooxygenase, CYP2B12, is the first identified skin-specific cytochrome P450 enzyme. It is characterized by high, constitutive expression in an extrahepatic tissue, the sebaceous glands of cutaneous tissues. It is expressed exclusively in a subset of differentiated keratinocytes called sebocytes, as demonstrated by Northern blot analysis, in situ hybridization, and polymerase chain reaction. The onset of its expression coincides with the morphological appearance of sebaceous glands in the neonatal rat. Recombinant CYP2B12 produced in Escherichia coli epoxidizes arachidonic acid to 11,12-and 8,9-epoxyeicosatrienoic acids (80 and 20% of total metabolites, respectively). The identification of arachidonic acid as a substrate for this skin-specific CYP monooxygenase suggests an endogenous function in keratinocytes in the generation of bioactive lipids and intracellular signaling.Mammalian CYP monooxygenases (CYP gene superfamily) oxidatively metabolize small, hydrophobic compounds, including steroids, sterols, fatty acids, fat-soluble vitamins, drugs, and toxins (1). These enzymes are expressed in most mammalian tissues, where they function in the biosynthesis or catabolism of endogenous and exogenous substrates. Members of the CYP2B gene subfamily are often called phenobarbital-inducible cytochrome P450 enzymes because phenobarbital treatment results in transcriptional activation of certain hepatic CYP2B genes (2). A typical CYP2B monooxygenase has 16-hydroxylase activity with androgenic steroids, such as testosterone, and is expressed in the liver and organs such as kidney, lung, and testis (2).CYP2B12 has long been known to be an unusual member of the CYP2B gene subfamily. The gene encoding this enzyme (CYP2B12) was discovered by Atchison and Adesnik (3). Originally called gene 4, it was one of several partial genomic clones that proved the multiplicity of the CYP2B gene subfamily. Gene 4 expression was not detected in the liver or other organs but rather in preputial glands (4), the large, paired sebaceous glands beneath the genital skin in rodents. This finding led Friedberg et al. (4) to isolate and characterize a full-length cDNA corresponding to gene 4 from a preputial gland cDNA library. More than 10 years after its discovery, the novel cytochrome P450 named CYP2B12 is now recognized as the first identified skin-specific cytochrome P450 enzyme.CYP2B12 has remained enigmatic not only for its restricted tissue-specific expression but also because its substrate was not identified. No activity could be demonstrated with preputial gland microsomes using typical CYP2B substrates, such as testosterone, androstenedione, benzphetamine, and ethoxy-, pentoxy-, and benzoyresorufin (2, 4). Our preliminary investigations of a novel CYP2B in mouse skin 1 having sequence homology to rat CYP2B12 renewed interest in this cutaneous P450 enzyme. We report here that CYP2B12 is a gene product unique to sebocytes, a subset of differentiated keratinocytes, and that arachidonate is a substrate for CYP2B12. It is hypothesiz...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.