Abstract. Due to the low to moderate seismicity of the European Western Alps, few focal mechanisms are available in this region to this day, and the corresponding current seismic stress and strain fields remain partly elusive. The development of dense seismic networks in past decades now provides a substantial number of seismic records in the 0–5 magnitude range. The corresponding data, while challenging to handle due to their amount and relative noise, represent a new opportunity to increase the spatial resolution of seismic deformation fields. The aim of this paper is to quantitatively assess the current seismic stress and strain fields within the Western Alps, from a probabilistic standpoint, using new seismotectonic data. The dataset comprises more than 30 000 earthquakes recorded by dense seismic networks between 1989 and 2013 and more than 2200 newly computed focal mechanisms in a consistent manner. The global distribution of P and T axis plunges confirms a majority of transcurrent focal mechanisms in the entire western Alpine realm, combined with pure extension localized in the core of the belt. We inverted this new set of focal mechanisms through several strategies, including a seismotectonic zoning scheme and grid procedure, revealing extensional axes oriented obliquely to the strike of the belt. The Bayesian inversion of this new dataset of focal mechanisms provides a probabilistic continuous map of the style of seismic deformation in the Western Alps. Extension is found to be clustered, instead of continuous, along the backbone of the belt. Robust indications for compression are only observed at the boundary between the Adriatic and Eurasian plates. Short-wavelength spatial variations of the seismic deformation are consistent with surface horizontal Global Navigation Satellite System (GNSS) measurements, as well as with deep lithospheric structures, thereby providing new elements with which to understand the current 3D dynamics of the belt. We interpret the ongoing seismotectonic and kinematic regimes as being controlled by the joint effects of far-field forces – imposed by the anticlockwise rotation of Adria with respect to Europe – and buoyancy forces in the core of the belt, which together explain the short-wavelength patches of extension and marginal compression overprinted on an overall transcurrent tectonic regime.
Imaging and quantifying the present-day lithospheric deformation is crucial to understanding how and where long-term tectonic loading is accommodated. Plate tectonics theory assumes that the relative motion of rigid lithospheric blocks is accommodated on a limited set of localized fault zones, where the lithosphere either deforms elastically during the interseismic period of the seismic cycle, or in a brittle way during the coseismic rupture (Isacks et al., 1968;Le Pichon, 1968;Morgan, 1968). In a simple elastic framework, the surface deformation generated by slip on a dislocation buried in an elastic half-space can be computed (e.g., Okada, 1985), as well as the surface deformation produced by full or partial locking of the buried fault using the "backslip" hypothesis (Savage, 1983). Analyzing the spatial patterns of surface deformation and their temporal variations around active faults can therefore help constraining the behavior of fault systems at each stage of the seismic cycle.
Abstract. Due to the low to moderate seismicity of the European Western Alps, few focal mechanisms are available to this day in this region, and the corresponding current seismic stress and strain fields remain partly elusive. The development of dense seismic networks in the past decades now provides a substantial amount of seismic records down to low magnitudes. The corresponding data, while challenging to handle due to their amount and relative noise, represent a new opportunity to increase the spatial resolution of seismic deformation fields. The aim of this paper is to quantitatively assess the current seismic stress and strain fields within the Western Alps, from a probabilistic standpoint, using new seismotectonic data. The dataset comprises more than 30,000 earthquakes recorded by dense seismic networks since 1989 and more than 2200 focal mechanisms newly computed in a consistent manner. The global distribution of P and T axes plunges confirms a majority of transcurrent focal mechanisms in the overall alpine realm, combined with pure extension localized in the core of the belt. We inverted this new set of focal mechanisms through several strategies, including a seismotectonic zoning scheme and grid procedure, revealing extensional axes oriented obliquely to the strike of the belt. The Bayesian inversion of this new dataset of focal mechanisms provides a probabilistic continuous map of the style of seismic deformation in the Western Alps. Extension is found clustered, instead of continuous along the backbone of the belt. Compression is robustly retrieved only in the Po plain, which lays at the limit between the Adriatic and Eurasian plates. High frequency spatial variations of the seismic deformation are consistent with surface horizontal GNSS measurements as well as with deep lithospheric structures, thereby providing new elements to understand the current 3D dynamics of the belt. We interpret the ongoing seismotectonic and kinematic regimes as being controlled by the joint effects of far-field forces –imposed by the counterclockwise rotation of Adria with respect to Europe- and of buoyancy forces in the core of the belt, which together explain the high frequency patches of extension and of marginal compression overprinted on an overall transcurrent tectonic regime.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.