Precision livestock management has become a new field of study as the result of recent advancements in real-time global positioning system (GPS) tracking, accelerometer and other sensor technologies. Real-time tracking and accelerometer monitoring has the potential to remotely detect livestock disease, animal well-being and grazing distribution issues and notify ranchers and graziers so that they can respond as soon as possible. On-going research has shown that accelerometers can remotely monitor livestock behavior and detect activity changes that are associated with disease and parturition. GPS tracking can also detect parturition by monitoring the distance between a ewe and the remainder of the flock. Tracking also has the potential to detect water system failures. Combinations of GPS tracking and accelerometer monitoring may be more accurate than either device used by itself. Real-time GPS tracking can identify when livestock congregate in environmental sensitive areas which may allow managers the chance to respond before resource degradation occurs. Identification of genetic markers associated with terrain use, decreased cost of GPS tracking and novel tracking data processing should facilitate development of tools needed for genetic selection for cattle grazing distribution. Precision livestock management has potential to improve welfare of livestock grazing rangelands and forested lands, reduce labor costs and improve ranch profitability and improve the condition and sustainability of riparian areas and other environmental sensitive areas on grazing lands around the world.
Integrated crop-livestock system (ICLS) is an alternative that can help in intensifying food production while benefiting the environment. However, the assessments of the impacts of ICLS on the soil and economic benefits relative to specific environments in South Dakota are still lacking. This study was to assess the effects of ICLS on soil health and economic benefits under a corn (Zea mays L.)-soybean (Glycine max L.)-rye (Secale cereale L.) rotation in South Dakota. Cover crops blends were planted after the rye crop, and grazing treatments (with and without) were applied after the cover crops establishment in 2015-2016. Data from this study indicate that most soil properties are not negatively impacted by grazing. However, the grazing increased soil bulk density (BD) and decreased soil organic carbon (SOC) and soil water retention (SWR) compared with the ungrazing. The effect of grazing on corn yield was not significant. The cover crops did not impact the pH, electrical conductivity (EC), total nitrogen (TN), β-glucosidase, acid hydrolysis carbon fraction, microbial biomass carbon, and SWR, but impacted the SOC, hot/cold water carbon fraction, BD, infiltration rate (q s) in some phases and depths. The effects of different cover crop blends on corn yield were not as strong. The economic analysis showed that implementing ICLS
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.