SUMMARY Quantitative estimation of pore fractions filled with liquid water, ice and air is crucial for a process-based understanding of permafrost and its hazard potential upon climate-induced degradation. Geophysical methods offer opportunities to image distributions of permafrost constituents in a non-invasive manner. We present a method to jointly estimate the volumetric fractions of liquid water, ice, air and the rock matrix from seismic refraction and electrical resistivity data. Existing approaches rely on conventional inversions of both data sets and a suitable a priori estimate of the porosity distribution to transform velocity and resistivity models into estimates for the four-phase system, often leading to non-physical results. Based on two synthetic experiments and a field data set from an Alpine permafrost site (Schilthorn, Bernese Alps and Switzerland), it is demonstrated that the developed petrophysical joint inversion provides physically plausible solutions, even in the absence of prior porosity estimates. An assessment of the model covariance matrix for the coupled inverse problem reveals remaining petrophysical ambiguities, in particular between ice and rock matrix. Incorporation of petrophysical a priori information is demonstrated by penalizing ice occurrence within the first two meters of the subsurface where the measured borehole temperatures are positive. Joint inversion of the field data set reveals a shallow air-rich layer with high porosity on top of a lower-porosity subsurface with laterally varying ice and liquid water contents. Non-physical values (e.g. negative saturations) do not occur and estimated ice saturations of 0–50 per cent as well as liquid water saturations of 15–75 per cent are in agreement with the relatively warm borehole temperatures between −0.5 and 3 ° C. The presented method helps to improve quantification of water, ice and air from geophysical observations.
Abstract. Mountain permafrost is sensitive to climate change and is expected to gradually degrade in response to the ongoing atmospheric warming trend. Long-term monitoring of the permafrost thermal state is a key task, but problematic where temperatures are close to 0 ∘C because the energy exchange is then dominantly related to latent heat effects associated with phase change (ice–water), rather than ground warming or cooling. Consequently, it is difficult to detect significant spatio-temporal variations in ground properties (e.g. ice–water ratio) that occur during the freezing–thawing process with point scale temperature monitoring alone. Hence, electrical methods have become popular in permafrost investigations as the resistivities of ice and water differ by several orders of magnitude, theoretically allowing a clear distinction between frozen and unfrozen ground. In this study we present an assessment of mountain permafrost evolution using long-term electrical resistivity tomography monitoring (ERTM) from a network of permanent sites in the central Alps. The time series consist of more than 1000 datasets from six sites, where resistivities have been measured on a regular basis for up to 20 years. We identify systematic sources of error and apply automatic filtering procedures during data processing. In order to constrain the interpretation of the results, we analyse inversion results and long-term resistivity changes in comparison with existing borehole temperature time series. Our results show that the resistivity dataset provides valuable insights at the melting point, where temperature changes stagnate due to latent heat effects. The longest time series (19 years) demonstrates a prominent permafrost degradation trend, but degradation is also detectable in shorter time series (about a decade) at most sites. In spite of the wide range of morphological, climatological, and geological differences between the sites, the observed inter-annual resistivity changes and long-term tendencies are similar for all sites of the network.
Abstract. Increasing water scarcity in the Central Andes due to ongoing climate change recently caused a controversy and debate on the significance of permafrost occurrences for the hydrologic cycle. The lack of comprehensive field measurements and quantitative data on the local variability in internal structure and ground ice content further exacerbates the situation. We present field-based data from six extensive geophysical campaigns undertaken since 2016 in three different high-altitude regions of the Central Andes of Chile and Argentina (28 to 32∘ S). Our data cover various permafrost landforms ranging from ice-poor bedrock to ice-rich rock glaciers and are complemented by ground truthing information from boreholes and numerous test pits near the geophysical profiles. In addition to determining the thickness of the potential ice-rich layers from the individual profiles, we also use a quantitative four-phase model to estimate the volumetric ground ice content in representative zones of the geophysical profiles. Our analysis of 52 geoelectrical and 24 refraction seismic profiles within this study confirmed that ice-rich permafrost is not restricted to rock glaciers but is also observed in non-rock-glacier permafrost slopes in the form of interstitial ice, as well as layers with excess ice, resulting in substantial ice contents. Consequently, non-rock-glacier permafrost landforms, whose role for local hydrology has so far not been considered in remote-sensing-based approaches, may be similarly relevant in terms of ground ice content on a catchment scale and should not be ignored when quantifying the potential hydrological significance of permafrost. We show that field-geophysics-based estimates of ground ice content, while more labour intensive, are considerably more accurate than remote sensing approaches. The geophysical data can then be further used in upscaling studies to the catchment scale in order to reliably estimate the hydrological significance of permafrost within a catchment.
Abstract. Mountain permafrost is sensitive to climate change and is expected to gradually degrade in response to the ongoing atmospheric warming trend. Long-term monitoring the permafrost thermal state is a key task, but it is problematic where temperatures are close to 0 °C. The energy exchange is indeed often dominantly related to latent heat effects associated with phase change (ice/water), rather than ground warming or cooling. Consequently, it is difficult to detect significant spatio-temporal variations of ground properties (e.g. ice-water ratio) that occur during the freezing/thawing process with point scale temperature monitoring alone. Hence, electrical methods have become popular in permafrost investigations as the resistivities of ice and water differ by several orders of magnitude, theoretically allowing a clear distinction between frozen and unfrozen ground. In this study we present an assessment of mountain permafrost evolution using long-term electrical resistivity tomography monitoring (ERTM) from a network of permanent sites in the Central Alps. The time series consist of more than 1000 data sets from six sites, where resistivities have been measured on a regular basis for up to twenty years. We identify systematic sources of error and apply automatic filtering procedures during data processing. In order to constrain the interpretation of the results, we analyse inversion results and long-term resistivity changes in comparison with existing borehole temperature time series. Our results show that the resistivity data set provides the most valuable insights at the melting point. A prominent permafrost degradation trend is evident for the longest time series (19 years), but also detectable for shorter time series (about a decade) at most sites. In spite of the wide range of morphological, climatological and geological differences between the sites, the observed inter-annual resistivity changes and long-term tendencies are similar for all sites of the network.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.