The sulphatase family of enzymes have regions of sequence similarity, but relatively little is known about either the structure-function relationships of sulphatases, or the role of highly conserved amino acids. The sequence of amino acids CTPSR at position 91-95 of 4-sulphatase has been shown to be highly conserved in all of the sequenced sulphatase enzymes. The cysteine at amino acid 91 of 4-sulphatase was selected for mutation analysis due to its potential role in either the active site, substrate-binding site or part of a key structural domain of 4-sulphatase and due to the absence of naturally occurring mutations in this residue in mucopolysaccharidosis type VI (MPS VI) patients. Two mutations, C91S and C91T, altering amino acid 91 of 4-sulphatase were generated and expressed in Chinese hamster ovary cells. Biochemical analysis of protein from a C91S cell line demonstrated no detectable 4-sulphatase enzyme activity but a relatively normal level of 4-sulphatase polypeptide (180% of the wild-type control protein level). Epitope detection, using a panel of ten monoclonal antibodies, demonstrated that the C91S polypeptide had a similar immunoreactivity to wild-type 4-sulphatase, suggesting that the C91S substitution does not induce a major structural change in the protein. Reduced catalytic activity associated with normal levels of 4-sulphatase protein have not been observed in any of the MPS VI patients tested and all show evidence of structural modification of 4-sulphatase protein with the same panel of antibodies [Brooks, McCourt, Gibson, Ashton, Shutter and Hopwood (1991) Am. J. Hum. Genet. 48, 710-719]. The loss of enzyme activity without a detectable protein conformation change suggests that Cys-91 may be a critical residue in the catalytic process. In contrast, analysis of protein from a C91T cell line revealed low levels of catalytically inactive 4-sulphatase polypeptide (0.37% of the wild-type control protein level) which had missing or masked epitopes, suggesting an altered protein structure or conformation. Subcellular fractionation studies of the C91T cell line demonstrated a high proportion of 4-sulphatase polypeptide content in organelles characteristic of microsomes. The aberrant intracellular localization and the reduced cellular content of 4-sulphatase polypeptide was consistent with the observed structural modification leading to retention and degradation of the protein within an early vacuolar compartment.
Background: In recent years, there have been significant advances in the development of enzyme replacement and other therapies for lysosomal storage disorders (LSDs). Early diagnosis, before the onset of irreversible pathology, has been demonstrated to be critical for maximum efficacy of current and proposed therapies. In the absence of a family history, the presymptomatic detection of these disorders ideally can be achieved through a newborn screening program. One approach to the development of such a program is the identification of suitable screening markers. In this study, the acid α-glucosidase protein was evaluated as a marker protein for Pompe disease and potentially for other LSDs.
Methods: Two sensitive immunoquantification assays for the measurement of total (precursor and mature) and mature forms of acid α-glucosidase protein were used to determine the concentrations in plasma and dried blood spots from control and LSD-affected individuals.
Results: In the majority of LSDs, no significant increases above control values were observed. However, individuals with Pompe disease showed a marked decrease in acid α-glucosidase protein in both plasma and whole blood compared with unaffected controls. For plasma samples, this assay gave a sensitivity of 95% with a specificity of 100%. For blood spot samples, the sensitivity was 82% with a specificity of 100%.
Conclusions: This study demonstrates that it is possible to screen for Pompe disease by screening the concentration of total acid α-glucosidase in plasma or dried blood spots.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.