Thirty-eight lactating dairy cows including 6 ruminally cannulated cows were used in a feeding study to assess effects of feed sources that differed in dietary nonfiber carbohydrate (NFC) composition and ruminal degradability of dietary protein (RDP) on production, ruminal, and plasma measures. The design was a partially balanced, incomplete Latin square with three 21-d periods and a 3 x 2 factorial arrangement of treatments. Samples and data were collected in the last 7 d of each period. Feed sources that differed in NFC profile were dry ground corn (GC; starch), dried citrus pulp (DCP; sugar and pectins), and sucrose+molasses (SM; sugar). Dietary RDP was altered by providing CP with soybean meal (+RDP) or substituting a heat-treated expeller soybean product for a portion of the soybean meal (-RDP). Diets were formulated to be isonitrogenous and similar in NFC concentration. Cows consuming GC had the greatest milk urea nitrogen and milk protein percentage and yield, tended to have the greatest dry matter intake, but had a lesser milk fat percentage compared with cows consuming DCP and SM. Sucrose+molasses diets supported greater dry matter intake, milk protein yield, and 3.5% fat- and protein-corrected milk yield than did DCP diets. On -RDP diets, milk protein percentage was less and milk urea nitrogen and protein yield tended to be less than for +RDP diets. Dry ground corn diverged from DCP and SM in the effect of NFC x RDP, with cows consuming GC having lesser milk yield, 3.5% fat- and protein-corrected milk yield, and efficiency with -RDP as compared with +RDP, whereas these production measures were greater with -RDP than +RDP for cows consuming DCP and SM. In contrast, in situ NDF digestibility at 30h for GC and SM was greater for -RDP as compared with +RDP, but the reverse was true for DCP. The lowest ruminal pH detected by 6h postfeeding was also influenced by the interaction of NFC x RDP, with cows consuming SM having a lower pH with +RDP than with -RDP and cows consuming DCP having a similar pH on either RDP treatment. Total rumen volatile fatty acid concentrations did not differ among diets, but acetate molar percent was greater for DCP than for SM, and GC had the lowest molar percent for butyrate and valerate and greatest branched-chain volatile fatty acid concentration. Valerate molar percent and NH(3) concentration tended to be greater with +RDP than with -RDP. Plasma glucose and insulin were both greater in cows receiving SM than in those receiving DCP. Protein degradability, NFC source, and their interactions affected lactation, ruminal, and blood measures, suggesting that these dietary factors warrant further consideration in diet formulation.
Inheritance of the SLICK1 allele of the prolactin receptor gene improves thermotolerance of lactating Holstein cows under humid heat stress conditions. The aim of this study was to investigate whether pre-and postweaning Holstein heifers carrying the SLICK1 allele would show physiological responses indicative of higher tolerance to heat stress in high-and low-humidity climates. A total of 101 heifer calves of two age groups heterozygous for the SLICK1 allele and 103 wild-type half-siblings were evaluated during July 2020 in 3 dairy farms in central California and 2 in south Florida. Dry bulb temperature and relative humidity data were recorded during evaluation and used to calculate the temperature-humidity index (THI). Physiological measurements were obtained between 1600 and 1900 h in California, and 1200 and 1400 h in Florida and included rectal temperature, respiration rate, skin temperature, and sweating rate. Data were analyzed via Generalized Linear Mixed Models including the main effects of genotype, state, group, sire, farm within state, and interactions, with THI included as a covariate. The correlations between THI and dependent variables were analyzed via linear regression. The average 24-h THI was higher in Florida compared with California (90 vs. 72, respectively); the main driver of the higher THI in Florida was the high relative humidity (average 85.6% in Florida vs. 36.7% in California). In Florida, the rectal temperature of slick calves was 0.4°C lower than non-slick calves (39.5 ± 0.1 vs 39.9 ± 0.1°C); no differences were detected between slick and non-slick calves in California. Regardless of genotype, heifer calves in Florida had higher respiration rate, higher rectal and skin temperatures, and lower sweating rate than in California. This study is the first to evaluate physiological responses of calves carrying the SLICK1 allele under heat stress conditions in different climates. Our findings demonstrate that the presence of this allele is associated with lower rectal temperatures in pre-and post-weaning Holstein females. According to the physiological parameters evaluated, calves raised in Florida appeared to be under more severe heat stress; in those conditions, the SLICK1 allele was advantageous to confer thermotolerance as evidenced by lower rectal temperature in slick animals.
Poultry litter is applied to crop production land in the southern United States as a waste management strategy as it is a nitrogen-rich fertilizer and plentiful throughout the region. While litter is a known reservoir for human enteric pathogens including Salmonella enterica, little is known regarding pathogen prevalence, concentration, and common serotypes within the material. Litter from thirteen farms across four southern states was examined for Salmonella. Samples (n = 490) from six of the thirteen (46.2%) farms tested positive. Thirty-three samples out of 490 (6.7%) were Salmonella positive. Salmonella was ca. 95% less likely to be collected from stacked litter piles than from the poultry house floor or pasture, and every day increase in litter age reduced the likelihood of recovering Salmonella by 5.1%. When present, concentrations of Salmonella in contaminated poultry litter were variable, ranging from <0.45 to >280,000 MPN/g. The most prevalent serotypes found were Kentucky (45.5%), Kiambu (18.2%), and Michigan (12.1%). Salmonella Kentucky also had the greatest distribution and was found on 4 of the 6 (66.7%) positive farms. Results from this survey demonstrated that Salmonella prevalence and concentration in poultry litter is highly variable, and good agricultural practices are critical to safely use poultry litter as a soil amendment on fresh produce fields.
The SLICK1 mutation in the prolactin receptor (PRLR) results in a short-hair coat and increased ability to regulate body temperature during heat stress. It is unclear whether the mutation affects capacity for sweating. The objective of this observational study was to evaluate whether the SLICK1 mutation in PRLR alters characteristics of skin related to sweat gland abundance or function. Skin biopsies from 31 Holstein heifers, including 14 wild-type (SL −/− ) and 17 heterozygous slick (SL +/− ), were subjected to histological analysis to determine the percent of the surface area of skin sections that are occupied by sweat glands. We detected no effect of genotype on this variable. Immunohistochemical analysis of the forkhead transcription factor A1 (FOXA1), a protein essential for sweating in mice, from 6 SL −/− and 6 SL +/− heifers indicated twice as much FOXA1 in sweat glandular epithelia of SL +/− heifers as in SL −/− heifers. Results from RNA sequencing of skin biopsies from 5 SL −/− and 7 SL +/− heifers revealed few genes that were differentially expressed and none that have been associated with sweat gland development or function. In conclusion, results do not support the idea that the SLICK1 mutation changes the abundance of sweat glands in skin, but do show that functional properties of sweat glands, as indicated by increased abundance of immunoreactive FOXA1, are modified by inheritance of the mutation in PRLR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.