In order to integrate and analyze knowledge on the use of protein supplements and protein nutrition of lactating dairy cows, we compiled a review of 108 studies published throughout the world, but principally in the Journal of Dairy Science between 1985 and 1997. In 29 comparisons from 15 metabolism trials, soybean meal was replaced by high amounts of rumen undegradable protein (RUP) as a supplement; the benefits were not consistently observed for flow to the duodenum, essential amino acids, or lysine and methionine. High RUP diets resulted in decreased microbial protein synthesis in 76% of the comparisons. However, fish meal provided a good balance of lysine and methionine when calculated as a percentage of total essential amino acids. In 127 comparisons from 88 lactation trials that were published from 1985 to 1997, researchers studied the effects of replacing soybean meal with high RUP sources, such as heated and chemically treated soybean meal, corn gluten meal, distillers grains, brewers grains, blood meal, meat and bone meal, feather meal, or blends of these sources; milk yield was significantly higher in only 17% of the comparisons. Fish meal and treated soybean meal accounted for most of the positive effects on milk yield from RUP; corn gluten meal resulted in mostly negative results. The percentage of fat in milk was depressed more by fish meal than by other RUP sources. Protein percentage was decreased in 28 comparisons and increased in only 6 comparisons, probably reflecting the decrease in microbial protein synthesis, as was observed for diets high in RUP. The data strongly suggest that increased RUP per se in dairy cow diets, which often results in a decrease in RDP and a change in absorbed AA profiles, does not consistently improve lactational performance.
Our objectives were to measure net fluxes of free AA (FAA) and peptide-bound AA (PBAA) across portal-drained viscera, liver, splanchnic tissues, and mammary tissues, and milk AA output of lactating Holstein cows (n = 8, 86 +/- 8 d in milk). Cows were fed an alfalfa-based total mixed ration containing 40% steam-flaked (SFS) or dry-rolled (DRS) sorghum grain. The total mixed rations were offered at 12-h intervals in a crossover design. Blood samples were obtained from indwelling catheters in portal, hepatic, and mammary veins and from mesenteric or costoabdominal arteries every 2 h from each cow and diet. Intake of dry matter was 17.9 and 18.6 kg/d of the SFS and DRS diets, respectively, but dropped to 16.3 kg/d for cows fed the SFS diet in the last 3 experimental days, sampling day included. Milk and milk crude protein yields (kg/12-h sampling) were 13.85 vs. 13.25 and 0.425 vs. 0.396 for cows fed SFS or DRS, respectively, and were not affected by the considerable drop in dry matter intake of cows fed the SFS diet during the last 3 experimental days. The portal-drained visceral flux of total essential FAA was 417 and 442 g/12 h (SEM 63) in cows fed SFS and DRS, respectively. However, the portal-drained visceral flux of 7 essential PBAA out of the 9 determined was numerically greater in cows fed the SFS diet, and total essential PBAA in that treatment was 77.4 +/- 22.2 compared with 35.4 +/- 50.2 g/12 h for cows fed the DRS diet. This phenomenon was again observed in a greater total splanchnic flux (FAA + PBAA) of 462 and 371 g/12 h in SFS- and DRS-fed cows, respectively. Mammary uptake of essential AA from both pools (free and peptide bound), and recovery of essential AA in milk, was again numerically higher in SFS-fed cows. In addition to FAA, quantifying the contribution of PBAA may improve our understanding of tissue use of AA substrates, and this may ultimately lead to improved diet formulations with respect to intestinal absorption and mammary uptake of AA.
Objectives were to measure net fluxes of free (FAA) and peptide bound amino acids (AA) (PBAA) across portal-drained viscera (PDV), liver, splanchnic, and mammary tissues, and of milk AA output of lactating Holstein cows (n = 6, 109 +/- 9 d in milk) as influenced by flaking density of corn grain. Cows were fed alfalfa-based total mixed ration (TMR) containing 40% steam-flaked (SFC) or steam-rolled corn (SRC) grain. The TMR were offered at 12-h intervals in a crossover design. Six sets of blood samples were obtained from indwelling catheters in portal, hepatic, and mammary veins and mesenteric or costoabdominal arteries every 2 h from each cow and diet. Intake of dry matter (18.4 +/- 0.4 kg/d), N, and net energy for lactation were not altered by corn processing. Milk and milk crude protein yields (kg/12-h sampling) were 14.2 vs. 13.5 and 0.43 vs. 0.39 for cows fed SFC or SRC, respectively. The PDV flux of total essential FAA was greater (571.2 vs. 366.4 g/12 h, SEM 51.4) in cows fed SFC. The PDV flux of total essential PBAA was 69.3 +/- 10.8 and 51.5 +/- 13.2 g/12 h for cows fed SFC and SRC, respectively, and differed from zero, but fluxes of individual PBAA rarely differed between treatments. Liver flux of essential FAA was greater in cows fed SRC, but only the PBAA flux in cows fed SRC differed from zero. Splanchnic flux of FAA and PBAA followed the pattern of PDV flux, but variation was greater. Mammary uptake (g/12 h) of total essential FAA was greater in cows fed SFC than SRC (224.6 vs. 198.3, SEM 7.03). Mammary uptake of essential PBAA was 25.0 vs. 15.1, SEM 5.2, g/12 h for cows fed SFC or SRC, respectively, and differed from zero in half of the PBAA. Milk output of EAA was 187.8 vs 175.4, SEM 4.4 g/12 h in cows fed SFC and SRC, respectively, and output of most essential AA consistently tended to be greater in cows fed SFC. It is apparent that PBAA comprise a portion of total AA flux across PDV and are affected by grain processing. Further, this pool supplies an important component of AA taken up by the mammary gland. Quantifying the contribution of PBAA may improve diet formulation with respect to intestinal absorption and mammary uptake of AA.
Protein sources with different degradabilities were fed to 48 lactating Holstein cows receiving 37 or 39% of dietary dry matter as steam-flaked sorghum (360 g/L), steam-flaked corn (360 g/L), or steam-rolled corn (490 g/L) in a 3 x 2 factorial arrangement of treatments. Cows were fed an alfalfa-based diet with 7% soybean meal or 5% of an animal-marine protein blend and 37 or 39% grain. Although not significant, cows fed flaked grain yielded a mean of 1.5 kg/d more milk than did those fed rolled grain. Gross feed efficiency was not affected by grain processing or protein source, but diets with the animal-marine protein blend had 9% higher estimated net energy for lactation than did diets with soybean meal. The greater gains in body weight and increased digestibility of the diets with the animal-marine protein blend verify the higher energy concentration of those diets. Yield of milk protein was increased by flaked grain or the animal-marine protein blend, and flaked grain increased percentages of lactose and solids nonfat. Increasing the ratio of rumen-degradable starch to rumen-degradable protein increased milk protein content and yield linearly and increased contents of lactose and solids nonfat. A linear response of dry matter, organic matter, crude protein, and starch digestibilities was observed as the ratio of rumen-degradable starch to rumen-degradable protein increased. These data show improved performance of dairy cows fed a high rumen-undegradable protein source with diets high in rumen-degradable starch from steam-processed grains.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.