This paper presents an approach for intelligent tutoring in the field of legal argumentation. In this approach, students study transcripts of US Supreme Court oral argument and create a graphical representation of argument flow as tests offered by attorneys being challenged by hypotheticals posed by Justices. The proposed system, which is based on the collaborative modeling framework Cool Modes, is capable of detecting three types of weaknesses in arguments; when it does, it presents the student with a self explanation prompt. This kind of feedback seems more appropriate than the "strong connective feedback" typically offered by model-tracing or constraint-based tutors. Structural and context weaknesses in arguments are handled by graph grammars, and the critical problem of detecting and dealing with content weaknesses in student contributions is addressed through a collaborative filtering approach, thereby avoiding the critical problem of natural language processing in legal argumentation. An early version of the system was pilot tested with two students.
Blended courses that mix in-person instruction with online platforms are increasingly popular in secondary education. These tools record a rich amount of data on students' study habits and social interactions. Prior research has shown that these metrics are correlated with students' performance in face to face classes. However, predictive models for blended courses are still limited and have not yet succeeded at early prediction or cross-class predictions even for repeated offerings of the same course. In this work, we use data from two offerings of two different undergraduate courses to train and evaluate predictive models on student performance based upon persistent student characteristics including study habits and social interactions. We analyze the performance of these models on the same offering, on different offerings of the same course, and across courses to see how well they generalize. We also evaluate the models on different segments of the courses to determine how early reliable predictions can be made. This work tells us in part how much data is required to make robust predictions and how cross-class data may be used, or not, to boost model performance. The results of this study will help us better understand how similar the study habits, social activities, and the teamwork styles are across semesters for students in each performance category. These trained models also provide an avenue to improve our existing support platforms to better support struggling students early in the semester with the goal of providing timely intervention.
Big Data can radically transform education by enabling personalized learning, deep student modeling, and true longitudinal studies that compare changes across classrooms, regions, and years. With these promises, however, come risks to individual privacy and educational validity, along with deep policy and ethical issues. Education is largely a public service targeted primarily at minors. Participation is compulsory in most advanced societies, and in many ways, it is seen as a fundamental right. Academic success is necessary for advancement, but students often have little individual say in the process. For these reasons, it poses unique policy challenges that do not arise in other domains. Big data requires deep and constant monitoring of students, classes, and instructors. Who consents to such monitoring, and how will student or instructor privacy be preserved? Data also has immense commercial value. Who owns it? And who is permitted to profit from its use? In this article, I will discuss some of these unique issues, and I will outline some potential approaches that may be taken to address them.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.