Hyperkinetic movements are unwanted or excess movements that are frequently seen in children with neurologic disorders. They are an important clinical finding with significant implications for diagnosis and treatment. However, the lack of agreement on standard terminology and definitions interferes with clinical treatment and research. We describe definitions of dystonia, chorea, athetosis, myoclonus, tremor, tics, and stereotypies that arose from a consensus meeting in June 2008 of specialists from different clinical and basic science fields. Dystonia is a movement disorder in which involuntary sustained or intermittent muscle contractions cause twisting and repetitive movements, abnormal postures, or both. Chorea is an ongoing random-appearing sequence of one or more discrete involuntary movements or movement fragments. Athetosis is a slow, continuous, involuntary writhing movement that prevents maintenance of a stable posture. Myoclonus is a sequence of repeated, often non-rhythmic, brief shock-like jerks due to sudden involuntary contraction or relaxation of one or more muscles. Tremor is a rhythmic back-and-forth or oscillating involuntary movement about a joint axis. Tics are repeated, individually recognizable, intermittent movements or movement fragments that are almost always briefly suppressible and are usually associated with awareness of an urge to perform the movement. Stereotypies are repetitive, simple movements that can be voluntarily suppressed. We provide recommended techniques for clinical examination and suggestions for differentiating between the different types of hyperkinetic movements, noting that there may be overlap between conditions. These definitions and the diagnostic recommendations are intended to be reliable and useful for clinical practice, communication between clinicians and researchers, and for the design of quantitative tests that will guide and assess the outcome of future clinical trials.
.Step initiation involves anticipatory postural adjustments (APAs) that propel the body mass forward and laterally before the first step. This study used a startle-like acoustic stimulus (SAS) and transcranial magnetic stimulation (TMS) to examine the preparation of APAs before forward stepping. After an instructed delay period, subjects initiated forward steps in reaction to a visual "go" cue. TMS or SAS was delivered before (Ϫ1,400 or Ϫ100 ms), on (0 ms), or after (ϩ100 ms for TMS, ϩ200 ms for SAS) the imperative "go" cue. Ground reaction forces and electromyographic activity were recorded. In control trials, the mean reaction time was 217 Ϯ 38 ms. In contrast, the SAS evoked APAs that had an average onset of 110 Ϯ 54 ms, whereas the incidence, magnitude, and duration of the APA increased as the stimulus timing approached the "go" cue. A facilitation of motorevoked potentials in the initial agonist muscle was observed only when TMS was applied at ϩ100 ms. These findings indicate that there was an initial phase of movement preparation during which the APA-stepping sequence was progressively assembled, and that this early preparation did not involve the corticomotor pathways activated by TMS. The subsequent increase in corticomotor excitability between the imperative stimulus and onset of the APA suggests that corticospinal pathways contribute to the voluntary initiation of the prepared APA-stepping sequence. These findings are consistent with a feedforward mode of neural control whereby the motor sequence, including the associated postural adjustments, is prepared before voluntary movement.
An increase in ipsilateral descending motor pathway activity has been reported following hemiparetic stroke. In axial muscles, increased ipsilateral cortical activity has been correlated with good recovery whereas in distal arm muscles it is correlated with poor recovery. Currently, little is known about the control of proximal upper limb muscles following stroke. This muscle group is less impaired than the distal arm muscles following stroke, yet contributes to the abnormal motor coordination patterns associated with movements of the arm which can severely impair reaching ability. This study used transcranial magnetic stimulation (TMS) to evaluate the presence and magnitude of ipsilateral and contralateral projections to the pectoralis major (PMJ) muscle in stroke survivors. A laterality index (LI) was used to investigate the relationship between ipsilateral and contralateral projections and strength, clinical impairment level, and the degree of abnormal coordination expressed in the arm. The ipsilateral and contralateral hemispheres were stimulated using 90% TMS intensity while the subject generated shoulder adduction torques in both arms. Motor evoked potentials (MEPs) were measured in the paretic and non-paretic PMJ. The secondary torque at the elbow was measured during maximal adduction as an indicator of the degree of extensor synergy. Ipsilateral MEPs were most common in stroke survivors with moderate to severe motor deficits. The LI was correlated with clinical impairment level (P = 0.05) and the degree of extension synergy expressed in the arm (P = 0.03). The LI was not correlated with strength. These results suggest that increased excitability of ipsilateral pathways projecting to the proximal upper arm may contribute to the expression of the Correspondence to: Susan Schwerin, sc.schwerin@yahoo.com. extension synergy following stroke. These findings are discussed in relation to a possible unmasking or upregulation of oligosynaptic cortico-bulbospinal pathways following stroke. NIH Public Access
Nine healthy subjects performed single rapid wrist movements from neutral to targets at 20 deg of flexion or extension in response to an auditory cue. Surface EMG was recorded from the wrist flexors and extensors together with wrist position. Movements in both directions were characterised by the usual triphasic pattern of EMG activity in agonist (AG1), antagonist (ANTAG) and again in agonist (AG2) muscles. Single pulses of transcranial magnetic stimulation (TMS) were applied over the motor cortex at an intensity of 80 % of resting threshold at random times between 80 and 380 ms after the cue. We measured the peak‐to‐peak amplitude of the evoked motor potential (MEP) and the integrated EMG (IEMG) activity that preceded the MEP. In a separate set of experiments H reflexes were elicited in the wrist flexors instead of MEPs. MEP amplitudes in the agonist muscle increased by an average of 10 ± 8 ms (range −1 to 23 ms) prior to the onset of the AG1 burst and were associated with an increase of over sevenfold in the MEP:IEMG ratio, irrespective of movement direction. Agonist H reflex amplitudes were linearly related to, and increased at the same time as, changes in agonist IEMG. The principal ANTAG burst was not preceded by an increase in the antagonist muscle MEP:IEMG ratio. No relationship was found between the amplitude of the antagonist H reflexes and the preceding antagonist IEMG. Five subjects showed an increase in the MEP:IEMG ratio preceding and during the initial part of the AG2 burst. Our method of analysis shows that changes in motor cortical excitability mediating the initiation of movement occur much closer to the onset of EMG activity (less than 23 ms) than the 80–100 ms lead time previously reported. The lack of such changes before the onset of the ANTAG burst suggests that this may be initiated by a different, perhaps subcortical, mechanism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.