Microglial cells have important roles in maintaining brain homeostasis, and they are implicated in multiple brain diseases. There is currently interest in investigating microglial migration that results in cell accumulation at focal sites of injury. Here we describe a protocol for rapidly triggering and monitoring microglial migration by using a micropipette assay. This protocol is an adaptation of the axon turning assay using microglial cells. Chemoattractants released from the micropipette tip produce a chemotactic gradient that induces robust microglial migration. In combination with microscopic imaging, this assay allows simultaneous recording of cell movement and subcellular compartment trafficking, along with quantitative analysis. The actual handling time for the assay takes ∼2-3 h in total. The protocol is simple, inexpensive and convenient to set up, and it can be adopted to examine cell migration in multiple cell types, including cancer cells with a wide range of chemical signals.
Microglia are the resident immune cells in the CNS and play diverse roles in the maintenance of CNS homeostasis. Recent studies have shown that microglia continually survey the CNS microenvironment and scavenge cell debris and aberrant proteins by phagocytosis and pinocytosis, and that reactive microglia are capable to present antigens to T cells and initiate immune responses. However, how microglia process the endocytosed contents and evoke an immune response remain unclear. Here we report that a size-dependent selective transport of small soluble contents from the pinosomal lumen into lysosomes is critical for the antigen processing in microglia. Using fluorescent probes and water-soluble magnetic nanobeads of defined sizes, we showed in cultured rodent microglia, and in a cell-free reconstructed system that pinocytosed proteins become degraded immediately following pinocytosis and the resulting peptides are selectively delivered to major histocompatibility complex class II (MHC-II) containing lysosomes, whereas undegraded proteins are retained in the pinosomal lumen. This early size-based sorting of pinosomal contents relied on the formation of transient tunnel between pinosomes and lysosomes in a Rab7-and dynamin II-dependent manner, which allowed the small contents to pass through but restricted large ones. Inhibition of the size-based sorting markedly reduced proliferation and cytokine release of cocultured CD4 ϩ T cells, indicating that the size-based sorting is required for efficient antigen presentation by microglial cells. Together, these findings reveal a novel early sorting mechanism for pinosomal luminal contents in microglial cells, which may explain how microglia efficiently process protein antigens and evoke an immune response.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.