BackgroundLate embryogenesis abundant (LEA) proteins are involved in protecting higher plants from damage caused by environmental stresses. Foxtail millet (Setaria italica) is an important cereal crop for food and feed in semi-arid areas. However, the molecular mechanisms underlying tolerance to these conditions are not well defined.ResultsHere, we characterized a novel atypical LEA gene named SiLEA14 from foxtail millet. It contains two exons separated by one intron. SiLEA14 was expressed in roots, stems, leaves, inflorescences and seeds at different levels under normal growth conditions. In addition, SiLEA14 was dramatically induced by osmotic stress, NaCl and exogenous abscisic acid. The SiLEA14 protein was localized in the nucleus and the cytoplasm. Overexpression of SiLEA14 improved Escherichia coli growth performance compared with the control under salt stress. To further assess the function of SiLEA14 in plants, transgenic Arabidopsis and foxtail millet plants that overexpressed SiLEA14 were obtained. The transgenic Arabidopsis seedlings showed higher tolerance to salt and osmotic stress than the wild type (WT). Similarly, the transgenic foxtail millet showed improved growth under salt and drought stresses compared with the WT. Taken together, our results indicated that SiLEA14 is a novel atypical LEA protein and plays important roles in resistance to abiotic stresses in plants.ConclusionWe characterized a novel atypical LEA gene SiLEA14 from foxtail millet, which plays important roles in plant abiotic stress resistance. Modification of SiLEA14 expression may improve abiotic stress resistance in agricultural crops.Electronic supplementary materialThe online version of this article (doi:10.1186/s12870-014-0290-7) contains supplementary material, which is available to authorized users.
Paired-end RNA sequencing (RNA-Seq) was used to explore the bovine transcriptome from the mammary tissue of 12 Chinese Holstein cows with 6 extremely high and 6 low phenotypic values for milk protein percentage. We defined the differentially expressed transcripts between the two comparison groups, extremely high and low milk protein percentage during the peak lactation (HP vs LP) and during the non-lactating period (HD vs LD), respectively. Within the differentially expressed genes (DEGs), we detected 157 at peak lactation and 497 in the non-lactating period with a highly significant correlation with milk protein concentration. Integrated interpretation of differential gene expression indicated that SERPINA1, CLU, CNTFR, ERBB2, NEDD4L, ANG, GALE, HSPA8, LPAR6 and CD14 are the most promising candidate genes affecting milk protein concentration. Similarly, LTF, FCGR3A, MEGF10, RRM2 and UBE2C are the most promising candidates that in the non-lactating period could help the mammary tissue prevent issues with inflammation and udder disorders. Putative genes will be valuable resources for designing better breeding strategies to optimize the content of milk protein and also to provide new insights into regulation of lactogenesis.
People on average do not play their individually rational Nash equilibrium (NE) strategy in game experiments based on the public goods game (PGG) that model social dilemmas. Differences from NE behavior have also been observed in PGG experiments that include incentives to cooperate, especially when these are peer-incentives administered by the players themselves. In our repeated PGG experiment, an institution rewards and punishes individuals based on their contributions. The primary experimental result is that institutions which both reward and punish (IRP) promote cooperation significantly better than either institutions which only punish (IP) or which only reward (IR), and that IP has contribution levels significantly above IR. Although comparing their single-round NE strategies correctly predicts which incentives are best at promoting cooperation, individuals do not play these strategies overall. Our analysis shows that other intrinsic motivations that combine conforming behavior with reactions to being rewarded/punished provide a better explanation of observed outcomes. In our experiments, some individuals who display more cooperation than other individuals can be regarded as the exemplars (or leaders). The role of these exemplars in promoting cooperation provides important insights into understanding cooperation in PGG and the effectiveness of institutional incentives at promoting desirable societal behavior.
A vast amount of empirical and theoretical research on public good games indicates that the threat
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.