Sensor convergence on the mobile phone is spawning a broad base of new and interesting mobile applications. As applications grow in sophistication, raw sensor readings often require classification into more useful applicationspecific high-level data. For example, GPS readings can be classified as running, walking or biking. Unfortunately, traditional classifiers are not built for the challenges of mobile systems: energy, latency, and the dynamics of mobile.Kobe is a tool that aids mobile classifier development. With the help of a SQL-like programming interface, Kobe performs profiling and optimization of classifiers to achieve an optimal energy-latency-accuracy tradeoff. We show through experimentation on five real scenarios, classifiers on Kobe exhibit tight utilization of available resources. For comparable levels of accuracy traditional classifiers, which do not account for resources, suffer between 66% and 176% longer latencies and use between 31% and 330% more energy. From the experience of using Kobe to prototype two new applications, we observe that Kobe enables easier development of mobile sensing and classification apps.
Environment perception is important for collision-free motion planning of outdoor mobile robots. This paper presents an adaptive obstacle detection method for outdoor mobile robots using a single downward-looking LiDAR sensor. The method begins by extracting line segments from the raw sensor data, and then estimates the height and the vector of the scanned road surface at each moment. Subsequently, the segments are divided into either road ground or obstacles based on the average height of each line segment and the deviation between the line segment and the road vector estimated from the previous measurements. A series of experiments have been conducted in several scenarios, including normal scenes and complex scenes. The experimental results show that the proposed approach can accurately detect obstacles on roads and could effectively deal with the different heights of obstacles in urban road environments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.