Mice deficient in interferon (IFN)-γ or IFN-γ receptor develop progressive and fatal experimental autoimmune encephalomyelitis (EAE). We demonstrate that CD4 T cells lacking IFN-γ production were required to passively transfer EAE, indicating that they were disease-mediating cells in IFN-γ knockout (KO) mice. IFN-γ KO mice accumulated 10–16-fold more activated CD4 T cells (CD4+CD44hi) than wild-type mice in the central nervous system during EAE. CD4+CD44hi T cells in the spleen and central nervous system of IFN-γ KO mice during EAE showed markedly increased in vivo proliferation and significantly decreased ex vivo apoptosis compared with those of wild-type mice. IFN-γ KO CD4+CD44hi T cells proliferated extensively to antigen restimulation in vitro and accumulated larger numbers of live CD4+ CD44hi T cells. IFN-γ completely suppressed proliferation and significantly induced apoptosis of CD4+CD44hi T cells responding to antigen and hence inhibited accumulation of live, activated CD4 T cells. We thus present novel in vivo and in vitro evidence that IFN-γ may limit the extent of EAE by suppressing expansion of activated CD4 T cells.
In Mycobacterium bovis Bacille Calmette-Guérin (BCG)-infected wild-type mice, there was a large expansion of an activated (CD44hi) splenic CD4 T cell population followed by a rapid contraction of this population to normal numbers. Contraction of the activated CD4 T cell population in wild-type mice was associated with increased apoptosis of activated CD4 T cells. In BCG-infected interferon (IFN)-γ knockout (KO) mice, the activated CD4 T cell population did not undergo apoptosis. These mice accumulated large numbers of CD4+CD44hi T cells that were responsive to mycobacterial antigens. Addition of IFN-γ to cultured splenocytes from BCG-infected IFN-γ KO mice induced apoptosis of activated CD4 T cells. IFN-γ–mediated apoptosis was abolished by depleting adherent cells or Mac-1+ spleen cells or by inhibiting nitric oxide synthase. Thus, IFN-γ is essential to a regulatory mechanism that eliminates activated CD4 T cells and maintains CD4 T cell homeostasis during an immune response.
The presence and the role of interleukin 10 (IL-10), a potent cytokine synthesis inhibitory factor and antiinflammatory cytokine, were investigated in rheumatoid arthritis (RA). The expression of both mRNA and protein for IL-10 could be demonstrated in RA and osteoarthritis (OA) joints. Human IL-10 mRNA could be demonstrated by polymerase chain reaction amplification of cDNA made by reverse transcription of total RNA extracted directly from synovial tissue in five out of five RA and four out of five OA patients. IL-10 protein was demonstrated by specific immunoassay and immunohistology. IL-10 protein was spontaneously produced in all 11 RA and 17 OA synovial membrane cultures investigated, and this production was sustained for up to 5 d in culture in the absence of any extrinsic stimulation. IL-10 protein could also be detected by immunohistology in all five RA and four OA synovial membrane biopsies investigated, but not three normal synovial membranes. Immunohistology revealed that the IL-10 was localized to the synovial membrane lining layer and mononuclear cell aggregates. Immunofluorescence double staining revealed that the sources of IL-10 were monocytes in the lining layer, and T cells in the mononuclear cell aggregates. We found evidence that the IL-10 expression was functionally relevant, as neutralization of endogenously produced IL-10 in the RA synovial membrane cultures resulted in a two- to threefold increase in the protein levels of proinflammatory cytokines tumor necrosis factor alpha (TNF-alpha) and IL-1 beta, although IL-6 and IL-8 levels were not affected. The addition of exogenous recombinant IL-10 to the RA synovial membrane cultures resulted in a two- to threefold decrease in the levels of TNF-alpha and IL-1 beta. IL-8 levels were reduced by day 5; however, IL-6 levels were not affected by exogenous IL-10. Neutralization of the endogenous IL-10 in two out of seven RA synovial membrane cultures resulted in the expression of detectable levels of interferon gamma (561-1,050 pg/ml). Taken together, the above findings suggest that IL-10 is spontaneously produced in RA and OA and is an important immunoregulatory component in the cytokine network of RA, regulating monocyte and in some cases T cell cytokine production.
Conclusion. These results indicate that sensitivity of IFN␥-deficient B6 mice to CIA is associated with high IL-17 production and that this cytokine is required for expression of arthritis in this strain.
Using monoclonal antibodies and immunohistochemical techniques we have investigated the presence and distribution of interleukin-1 alpha (IL-1 alpha), type 1 IL-1 receptor (IL-1R1) and of interleukin-1 receptor antagonist (IL-1ra) in synovial tissue from 18 rheumatoid arthritis (RA) and eight osteoarthritis (OA) patients and in eight normal synovial tissue samples. IL-1 alpha and IL-1R1 were found in all of the samples examined. In RA, there were a large number of synovial cells expressing IL-1 alpha and IL-1R1, with 85 and 90% positive cells in the lining layer, 45 and 80% in the interaggregate area, and 90% of the vascular endothelial cells. In the lymphoid aggregates, 20% of the cells contained IL-1 alpha and 70% expressed IL-1R1. IL-1 alpha and IL-1R1 expressing cells showed a similar distribution in OA synovial membrane, but there was a smaller number of positive cells in the deeper area; and the staining intensity was lower. In contrast to IL-1 alpha and IL-1R1, IL-1ra was found only in 10/18 RA, 5/8 OA and 2/8 normal tissue samples. IL-1ra was detected in 35% of RA and 45% OA lining layer cells; 25% RA and 35% OA vascular endothelium; 10% RA and 15% OA interstitial cells and 30% cells in RA lymphoid aggregate. The staining intensity in both RA and OA tissues was comparably low. The presence of IL-1ra in RA and OA tissues was confirmed by Northern blot analysis for IL-1ra mRNA.(ABSTRACT TRUNCATED AT 250 WORDS)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.