In recent years, the understanding that regeneration progresses at the level of the myocardium has placed stem cell research at the center stage in cardiology. Despite an increasing interest in cell transplant research, relatively little is known about the biochemical regulation of the stem cell itself after transplantation into an ischemic heart. We demonstrated here, using rat mesenchymal stem cells (MSCs), that cells undergo caspase-dependent apoptosis in response to hypoxia and serum deprivation (SD), which are both components of ischemia in vivo. In particular, the treated cells exhibited mitochondrial dysfunction, including cytochrome C release, loss in ⌬⌿ m , and Bax accumulation, but in a p53-independent manner. Although the cells treated by hypoxia/SD possess the activity of caspase-8, zIEDT-fmk, a specific caspase-8 inhibitor, failed to inhibit cell apoptosis induced in our system. Taken together, our findings indicate that MSCs are sensitive to hypoxia/SD stimuli that involve changes in mitochondrial integrity and function but are potentially independent of caspase-8. STEM CELLS 2006;24: 416 -425
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.