The reasonable design of magnetic carbon-based composites is of great significance to improving the microwave absorption (MA) performance of the absorber. In this work, ultrafine FeNi3 nanocrystals (5–7 nm) embedded in a 3D honeycomb-like carbon matrix (FeNi3@C) were synthesized via a facile strategy that included a drying and carbonization process. Because of the soft magnetic property of the FeNi3 nanocrystals and their unique 3D honeycomb-like structure, the FeNi3@C composites exhibit excellent MA abilities. When the filler loading ratio of FeNi3@C/paraffin composites is only 30 wt%, the maximum reflection loss (RL) value is −40.6 dB at 10.04 GHz. Meanwhile, an ultra-wide absorption frequency bandwidth of 13.0 GHz (5.0–18.0 GHz over −10 dB) can be obtained in the thickness range of 2.0–4.5 mm, and this means that the absorber can consume 90% of the incident waves. It benefits from the dual loss components, multiple polarizations, and multiple reflections for improving MA performances of FeNi3@C composites. These observations suggest that the 3D honeycomb-like FeNi3@C composites have broad application prospects in exploring new MA materials that have a wide frequency bandwidth and strong absorption.
Graphene-encapsulated iron nanoparticles (Fe(G)) hold great promise as microwave absorbers owing to the combined dielectric loss of the graphene shell and the magnetic loss of the ferromagnetic metal core. Transmission electron microscopy (TEM) revealed transition metal nanoparticles encapsulated by graphene layers. The microwave electromagnetic parameters and reflection loss (R) of the Fe(G) were investigated. Graphene provided Fe(G) with a distinctive dielectric behavior via interfacial polarizations taking place at the interface between the iron cores and the graphene shells. The R of Fe(G)/paraffin composites with different Fe(G) contents and coating thickness was simulated according to the transmit-line theory and the measured complex permittivity and permeability. The Fe(G)/paraffin composites showed an excellent microwave absorption with a minimum calculated R of −58 dB at 11 GHz and a 60 wt% Fe(G) loading. The composites showed a wide bandwidth (the bandwidth of less than −10 dB was about 11 GHz). The R of composites with 1–3 mm coating thickness was measured using the Arch method. The absorption position was in line with the calculated results, suggesting that the graphene-coated iron nanoparticles can generate a suitable electromagnetic match and provide an intense microwave absorption. Excellent Fe(G) microwave absorbers can be obtained by selecting optimum layer numbers and Fe(G) loadings in the composites.
The optimal design objectives of the microwave absorbing (MA) materials are high absorption, wide bandwidth, light weight and thin thickness. However, it is difficult for single-layer MA materials to meet all of these requirements. Constructing multi-layer structure absorbing coating is an important means to improve performance of MA materials. The carbon-based nanocomposites are excellent MA materials. In this paper, genetic algorithm (GA) and artificial bee colony algorithm (ABC) are used to optimize the design of multi-layer materials. We selected ten kinds of materials to construct the multi-layer absorbing material and optimize the performance. Two algorithms were applied to optimize the two-layer MA material with a total thickness of 3 mm, and it was found that the optimal bandwidth was 8.12 GHz and reflectivity was −53.4 dB. When three layers of MA material with the same thickness are optimized, the ultra-wide bandwidth was 10.6 GHz and ultra-high reflectivity was −84.86 dB. The bandwidth and reflectivity of the optimized material are better than the single-layer material without optimization. Comparing the GA and the ABC algorithm, the ABC algorithm can obtain the optimal solution in the shortest time and highest efficiency. At present, no such results have been reported.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.