Yield is the most important and complex trait for the genetic improvement of crops. Although much research into the genetic basis of yield and yield-associated traits has been reported, in each such experiment the genetic architecture and determinants of yield have remained ambiguous. One of the most intractable problems is the interaction between genes and the environment. We identified 85 quantitative trait loci (QTL) for seed yield along with 785 QTL for eight yield-associated traits, from 10 natural environments and two related populations of rapeseed. A trait-by-trait meta-analysis revealed 401 consensus QTL, of which 82.5% were clustered and integrated into 111 pleiotropic unique QTL by metaanalysis, 47 of which were relevant for seed yield. The complexity of the genetic architecture of yield was demonstrated, illustrating the pleiotropy, synthesis, variability, and plasticity of yield QTL. The idea of estimating indicator QTL for yield QTL and identifying potential candidate genes for yield provides an advance in methodology for complex traits.
BackgroundNext generation sequencing (NGS) technologies are providing new ways to accelerate fine-mapping and gene isolation in many species. To date, the majority of these efforts have focused on diploid organisms with readily available whole genome sequence information. In this study, as a proof of concept, we tested the use of NGS for SNP discovery in tetraploid wheat lines differing for the previously cloned grain protein content (GPC) gene GPC-B1. Bulked segregant analysis (BSA) was used to define a subset of putative SNPs within the candidate gene region, which were then used to fine-map GPC-B1.ResultsWe used Illumina paired end technology to sequence mRNA (RNAseq) from near isogenic lines differing across a ~30-cM interval including the GPC-B1 locus. After discriminating for SNPs between the two homoeologous wheat genomes and additional quality filtering, we identified inter-varietal SNPs in wheat unigenes between the parental lines. The relative frequency of these SNPs was examined by RNAseq in two bulked samples made up of homozygous recombinant lines differing for their GPC phenotype. SNPs that were enriched at least 3-fold in the corresponding pool (6.5% of all SNPs) were further evaluated. Marker assays were designed for a subset of the enriched SNPs and mapped using DNA from individuals of each bulk. Thirty nine new SNP markers, corresponding to 67% of the validated SNPs, mapped across a 12.2-cM interval including GPC-B1. This translated to 1 SNP marker per 0.31 cM defining the GPC-B1 gene to within 13-18 genes in syntenic cereal genomes and to a 0.4 cM interval in wheat.ConclusionsThis study exemplifies the use of RNAseq for SNP discovery in polyploid species and supports the use of BSA as an effective way to target SNPs to specific genetic intervals to fine-map genes in unsequenced genomes.
BackgroundThe gene FLOWERING LOCUS T (FT) and its orthologues play a central role in the integration of flowering signals within Arabidopsis and other diverse species. Multiple copies of FT, with different cis-intronic sequence, exist and appear to operate harmoniously within polyploid crop species such as Brassica napus (AACC), a member of the same plant family as Arabidopsis.ResultsWe have identified six BnFT paralogues from the genome of B. napus and mapped them to six distinct regions, each of which is homologous to a common ancestral block (E) of Arabidopsis chromosome 1. Four of the six regions were present within inverted duplicated regions of chromosomes A7 and C6. The coding sequences of BnFT paralogues showed 92-99% identities to each other and 85-87% identity with that of Arabidopsis. However, two of the paralogues on chromosomes A2 and C2, BnA2.FT and BnC2.FT, were found to lack the distinctive CArG box that is located within intron 1 that has been shown in Arabidopsis to be the binding site for theFLC protein. Three BnFT paralogues (BnA2.FT, BnC6.FT.a and BnC6.FT.b) were associated with two major QTL clusters for flowering time. One of the QTLs encompassing two BnFT paralogues (BnC6.FT.a and BnC6.FT.b) on chromosome C6 was resolved further using near isogenic lines, specific alleles of which were both shown to promote flowering. Association analysis of the three BnFT paralogues across 55 cultivars of B. napus showed that the alleles detected in the original parents of the mapping population used to detect QTL (NY7 and Tapidor) were ubiquitous amongst spring and winter type cultivars of rapeseed. It was inferred that the ancestral FT homologues in Brassica evolved from two distinct copies, one of which was duplicated along with inversion of the associated chromosomal segment prior to the divergence of B. rapa (AA) and B. oleracea (CC). At least ten such inverted duplicated blocks (IDBs) were identified covering a quarter of the whole B. napus genome.ConclusionSix orthologues of Arabidopsis FT were identified and mapped in the genome of B. napus which sheds new light on the evolution of paralogues in polyploidy species. The allelic variation of BnFT paralogues results in functional differences affecting flowering time between winter and spring type cultivars of oilseed Brassica. The prevalent inverted duplicated blocks, two of which were located by four of the six BnFT paralogues, contributed to gene duplications and might represent predominant pathway of evolution in Brassica.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.