BackgroundIncreasing evidence has demonstrated the functional relevance of long non-coding RNAs (lncRNAs) to immunity regulation and the tumor microenvironment in non-small cell lung cancer (NSCLC). However, tumor immune infiltration-associated lncRNAs and their value in improving clinical outcomes and immunotherapy remain largely unexplored.MethodsWe developed a computational approach to identify an lncRNA signature (TILSig) as an indicator of immune cell infiltration in patients with NSCLC through integrative analysis for lncRNA, immune and clinical profiles of 115 immune cell lines, 187 NSCLC cell lines and 1533 patients with NSCLC. Then the influence of the TILSig on the prognosis and immunotherapy in NSCLC was comprehensively investigated.ResultsComputational immune and lncRNA profiling analysis identified an lncRNA signature (TILSig) consisting of seven lncRNAs associated with tumor immune infiltration. The TILSig significantly stratified patients into the immune-cold group and immune-hot group in both training and validation cohorts. These immune-hot patients exhibit significantly improved survival outcome and greater immune cell infiltration compared with immune-cold patients. Multivariate analysis revealed that the TILSig is an independent predictive factor after adjusting for other clinical factors. Further analysis accounting for TILSig and immune checkpoint gene revealed that the TILSig has a discriminatory power in patients with similar expression levels of immune checkpoint genes and significantly prolonged survival was observed for patients with low TILSig and low immune checkpoint gene expression implying a better response to immune checkpoint inhibitor (ICI) immunotherapy.ConclusionsOur finding demonstrated the importance and value of lncRNAs in evaluating the immune infiltrate of the tumor and highlighted the potential of lncRNA coupled with specific immune checkpoint factors as predictive biomarkers of ICI response to enable a more precise selection of patients.
Long noncoding RNAs (lncRNAs) have been associated with cancer immunity regulation and the tumor microenvironment (TME). However, functions of lncRNAs of tumor-infiltrating B lymphocytes (TIL-Bs) and their clinical significance have not yet been fully elucidated. In the present study, a machine learning-based computational framework is presented for the identification of lncRNA signature of TIL-Bs (named ‘TILBlncSig’) through integrative analysis of immune, lncRNA and clinical profiles. The TILBlncSig comprising eight lncRNAs (TNRC6C-AS1, WASIR2, GUSBP11, OGFRP1, AC090515.2, PART1, MAFG-DT and LINC01184) was identified from the list of 141 B-cell-specific lncRNAs. The TILBlncSig was capable of distinguishing worse compared with improved survival outcomes across different independent patient datasets and was also independent of other clinical covariates. Functional characterization of TILBlncSig revealed it to be an indicator of infiltration of mononuclear immune cells (i.e. natural killer cells, B-cells and mast cells), and it was associated with hallmarks of cancer, as well as immunosuppressive phenotype. Furthermore, the TILBlncSig revealed predictive value for the survival outcome and immunotherapy response of patients with anti-programmed death-1 (PD-1) therapy and added significant predictive power to current immune checkpoint gene markers. The present study has highlighted the value of the TILBlncSig as an indicator of immune cell infiltration in the TME from a noncoding RNA perspective and strengthened the potential application of lncRNAs as predictive biomarkers of immunotherapy response, which warrants further investigation.
Mesenchymal stem cells (MSCs) are multi-potent progenitor cells with ability to differentiate into multiple lineages, including bone, cartilage, fat, and muscles. Recent research indicates that MSCs can be efficiently recruited to tumor sites, modulating tumor growth and metastasis. However, the underlying molecular mechanisms are not fully understood. Here, we first demonstrated that human umbilical cord-derived mesenchymal stem cells (hUC-MSCs), when mixed with human cholangiocarcinoma cell lines QBC939 in a xenograft tumor model, significantly increased the cancer cells proliferation and metastatic potency. MSCs and their conditioned media (MSC-CM) could improve the drug resistance of tumor when the compound K (CK) as an anti-cancer drug, a major intestinal bacterial metabolite of panaxoside, was administered to xenograft tumor mice. Furthermore, MSCs greatly increased the colony formation and invasion of cholangiocarcinoma cells QBC939 and Mz-ChA-1. Immunochemistry studies of cholangiocarcinoma tissue chips and transplantation tumor from nude mice showed that the expression of β-catenin was important for cholangiocarcinoma development. We further demonstrated that MSCs and MSCs-CM could promote proliferation and migration of cholangiocarcinoma cells through targeting the Wnt/β-catenin signaling pathway. hUC-MSCs or MSCs-CM stimulated Wnt activity by promoting the nuclear translocation of β-catenin, and up-regulated Wnt target genes MMPs family, cyclin D1 and c-Myc. Together, our studies highlight a critical role for MSCs on cancer metastasis and indicate MSCs promote metastatic growth and chemoresistance of cholangiocarcinoma cells via activation of Wnt/β-catenin signaling.
Tumor-infiltrating immune cells (TIICs) have been recognized as crucial components of the tumor microenvironment (TME) and induced both beneficial and adverse consequences for tumorigenesis as well as outcome and therapy (particularly immunotherapy). Computer-aided investigation of immune cell components in the TME has become a promising avenue to better understand the interplay between the immune system and tumors. In this study, we presented an overview of data sources, computational methods and software tools, as well as their application in inferring the composition of tumor-infiltrating immune cells in the TME. In parallel, we explored the future perspectives and challenges that may be faced with more accurate quantitative infiltration of immune cells in the future. Together, our study provides a little guide for scientists in the field of clinical and experimental immunology to look for dedicated resources and more competent tools for accelerating the unraveling of tumor-immune interactions with the implication in precision immunotherapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.