-The great difference in density between steam and liquid during wet steam injection always results in steam override, that is, steam gathers on the top of the pay zone. In this article, the equation for steam override coefficient was firstly established based on van Lookeren's steam override theory and then radius of steam zone and hot fluid zone were derived according to a more realistic temperature distribution and an energy balance in the pay zone. On this basis, the equation for the reservoir heat efficiency with the consideration of steam override was developed. Next, predicted results of the new model were compared with these of another analytical model and CMG STARS (a mature commercial reservoir numerical simulator) to verify the accuracy of the new mathematical model. Finally, based on the validated model, we analyzed the effects of injection rate, steam quality and reservoir thickness on the reservoir heat efficiency. The results show that the new model can be simplified to the classic model (Marx-Langenheim model) under the condition of the steam override being not taken into account, which means the Marx-Langenheim model is corresponding to a special case of this new model. The new model is much closer to the actual situation compared to the Marx-Langenheim model because of considering steam override. Moreover, with the help of the new model, it is found that the reservoir heat efficiency is not much affected by injection rate and steam quality but significantly influenced by reservoir thickness, and to ensure that the reservoir can be heated effectively, the reservoir thickness should not be too small.Résumé -Un modèle amélioré d'injection de vapeur prenant en compte la surcharge de vapeur -La différence de densité entre la vapeur et le liquide lors de l'injection de vapeur humide conduit toujours à un débordement de vapeur, en d'autres termes, la vapeur s'accumule sur le dessus de la zone de production. Dans cet article, l'équation pour le coefficient de surcharge de vapeur a d'abord été établie sur la base de la théorie de la surcharge de vapeur de van Lookeren, puis le rayon de la zone de vapeur et la zone de fluide chaud ont été dérivés selon une distribution de température plus réaliste et un bilan énergétique dans la zone de production. Sur cette base, l'équation d'efficacité thermique du réservoir en tenant compte de la surpression de la vapeur d'eau a été développée. Par la suite, les résultats prévus par le nouveau modèle ont été comparés à ceux d'un autre modèle analytique et à CMG STARS (un simulateur numérique à réservoir commercial reconnu) pour vérifier la précision du nouveau modèle mathématique. Enfin, sur la base du modèle validé, nous avons analysé les effets du taux d'injection, de la qualité de la vapeur et de la densité du réservoir sur l'efficacité thermique du réservoir. Les résultats montrent que le nouveau modèle peut être simplifié par rapport au modèle classique (modèle de Marx-Langenheim) à condition que la 2017 DOI: 10.2516 This is an Open Access article dist...
When superheated steam flows along the horizontal wellbore, it may change to saturated steam at some point of the wellbore. In this paper, to accurately predict the heat radius of cyclic superheated steam stimulation with horizontal wellbore, the distribution of thermophysical properties of superheated steam along the horizontal wellbore is considered. The heating process is divided into 4 stages for superheated steam and 3 stages for saturated steam when the phase change undergoes in the wellbore. On this basis, the mathematical model for heat radius of cyclic superheated steam stimulation with horizontal wellbore was established according to energy conservation principle and Laplace transformation method. The calculation result of the new mathematical model is in good agreement with that of the numerical simulation (CMG STARS) for the same parameters from a specific heavy oil reservoir, which verified the correctness of the new mathematical model. The effect of degree of superheat and the cycle of stimulation are analyzed in detail after the new mathematical model is validated. The results show that the heat radius of superheated zone, steam zone, and hot fluid zone all decrease with horizontal well length and increase with the cycle of stimulation. The higher the degree of superheat is, the farther from the heel of the horizontal wellbore the phase change undergoes. Besides, the radius of superheated zone, steam zone, and hot fluid zone increases with the degree of superheat, but the value increases little at steam zone and hot fluid zone.
The re-injection of associated sour gas, with high H2S and CO2 content, into the reservoir is proposed to be an effective development method due to its low investment cost and high oil recovery. The aim of this work is to present the phase behavior and miscible mechanism of crude oil displaced by associated sour gas. Based on the equation of state and the phase equilibrium theory, the phase behavior of crude oil mixed with various gases (associated sour gas, H2S, CO2 and CH4) have been analyzed. Then, the miscibility of associated sour gas was determined by calculating its Minimum Miscible Pressure (MMP) and the effect of sour component fraction on miscibility was evaluated. Moreover, a series of numerical simulations modeling 1D slim-tube were conducted using a compositional simulator to study the miscible mechanism in the displacement of crude oil with associated sour gas. The results show that the injection of H2S can reduce the bubble point pressure of crude oil and therefore is beneficial to prevent the crude oil degassing; nevertheless, the injection of CO2 has little effect on it. The miscible ability of associated sour gas decreases as its sour component fraction decreases. It is observed that the crude oil displaced by associated sour gas and sweet gas both show a combined condensing/vaporizing mechanism, with miscible zone in the middle of transition zone. However, the vaporizing-gas drive mechanism is slightly stronger than the condensing-gas drive mechanism during the displacement by associated sour gas while is significantly stronger during the displacement by sweet gas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.