Reef and oolitic gas reservoirs in the Permian Changxing and Triassic Feixianguan formations have been discovered in both the Luojiazhai-Puguang and Longgang areas of the Sichuan Basin, but the accumulation scale, abundance and distribution patterns differ greatly. In fact, the two areas have more differences than they have similarities. Similarities include: (1) the lithology, properties and types of porosity of the reef and oolitic reservoirs are primarily consistent in the two areas; (2) well-developed regional caprocks that seal the fluid system; and (3) accumulation process histories, with liquid hydrocarbon charging at an early stage, cracking into gas at a high to over-mature stage, adjustment of gas reservoirs at an uplifting stage, and final reservoir generation at a late stage. Differences include: (1) gas accumulations in the Luojiazhai-Puguang area that are dominated by oil-type cracked gas, with multiple and sufficient gas sources, contrasting with gas accumulations in the Longgang area that are dominated by coal-sourced gas with insufficient gas sources; (2) heterogeneity and horizontal diversity of reservoirs in the Longgang area that are stronger than in the Luojiazhai-Puguang area; and (3) the development of deep and large faults in the Luojiazhai-Puguang area that link source, reservoir and migration pathways, contrasting with poorly developed faults in Longgang area, where laterally variable fractures are the major migration pathway. Because of these differences, abundant large-scale structurally-controlled gas accumulations are developed in the Luojiazhai-Puguang area, whereas lithology plays a more important role in gas accumulation in the Longgang area where accumulations are smaller-scale and have lower gas-bearing abundance. We suggest that future exploration for reef and oolitic gas accumulations should be strengthened in NE Sichuan and NW Sichuan Jiulongshan. In particular, the transitional zone between Longgang and Kaijiang-Liangping Bay has the best potential for new discoveries.advantage transport of fault pathway, non-equilibrium transport of fracture pathway, integral accumulation with high abundance, heterogeneous accumulation with low abundance, Sichuan Basin
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.