Abundances of a range of air pollutants can be inferred from satellite UV-Vis spectroscopy measurements by using the unique absorption signatures of gas species. Here, we implemented several spectral fitting methods to retrieve tropospheric NO2, SO2, and HCHO from the ozone monitoring instrument (OMI), with radiative simulations providing necessary information on the interactions of scattered solar light within the atmosphere. We analyzed the spatial distribution and temporal trends of satellite-observed air pollutants over eastern China during 2005–2017, especially in heavily polluted regions. We found significant decreasing trends in NO2 and SO2 since 2011 over most regions, despite varying temporal features and turning points. In contrast, an overall increasing trend was identified for tropospheric HCHO over these regions in recent years. Furthermore, generalized additive models were implemented to understand the driving forces of air quality trends in China and assess the effectiveness of emission controls. Our results indicated that although meteorological parameters, such as wind, water vapor, solar radiation and temperature, mainly dominated the day-to-day and seasonal fluctuations in air pollutants, anthropogenic emissions played a unique role in the long-term variation in the ambient concentrations of NO2, SO2, and HCHO in the past 13 years. Generally, recent declines in NO2 and SO2 could be attributed to emission reductions due to effective air quality policies, and the opposite trends in HCHO may urge the need to control anthropogenic volatile organic compound (VOC) emissions.
In this study, ship-based multi-axis differential optical absorption spectroscopy (MAX-DOAS) measurements were performed in the East China Sea (ECS) area in June 2017. The tropospheric slant column densities (SCDs) of nitrogen dioxide (NO 2 ), sulfur dioxide (SO 2 ), and formaldehyde (HCHO) were retrieved from the measured spectra using the differential optical absorption spectroscopy (DOAS) technique. Using the simple geometric approach, the SCDs of different trace gases observed at a 15 • elevation angle were adopted to convert into tropospheric vertical column densities (VCDs). During this campaign, the averaged VCDs of NO 2 , SO 2 , and HCHO in the marine environment over the ECS area are 6.50 × 10 15 , 4.28 × 10 15 , and 7.39 × 10 15 molec cm −2 , respectively. In addition, the shipbased MAX-DOAS trace gas VCDs were compared with satellite observations of the Ozone Monitoring Instrument (OMI) and Ozone Mapping and Profiler Suite (OMPS). The daily OMI NO 2 VCDs agreed well with ship-based MAX-DOAS measurements showing the correlation coefficient R of 0.83. In addition, the good agreements of SO 2 and HCHO VCDs between the OMPS satellite and ship-based MAX-DOAS observations were also found, with correlation coefficients R of 0.76 and 0.69. The vertical profiles of these trace gases are achieved from the measured differential slant column densities (DSCDs) at different elevation angles using the optimal estimation method. The retrieved profiles displayed the typical vertical distribution characteristics, which exhibit low concentrations of < 3, < 3, and < 2 ppbv for NO 2 , SO 2 , and HCHO in a clean area of the marine boundary layer far from coast of the Yangtze River Delta (YRD) continental region. Interestingly, elevated SO 2 concentrations can be observed intermittently along the ship routes, which is mainly attributed to the vicinal ship emissions in the view of the MAX-DOAS measurements. Combined with the onboard ozone lidar measurements, the ozone (O 3 ) formation was discussed with the vertical profile of the HCHO/NO 2 ratio, which is sensitive to increases in NO 2 concentration. This study provided further understanding of the main air pollutants in the marine boundary layer of the ECS area and also benefited the formulation of policies regulating the shipping emissions in such costal areas like the YRD region.
During the outbreak of the coronavirus disease 2019 (COVID-19) in China in January and February 2020, production and living activities were drastically reduced to impede the spread of the virus, which also caused a strong reduction of the emission of primary pollutants. However, as a major species of secondary air pollutant, tropospheric ozone did not reduce synchronously, but instead rose in some region. Furthermore, higher concentrations of ozone may potentially promote the rates of COVID-19 infections, causing extra risk to human health. Thus, the variation of ozone should be evaluated widely. This paper presents ozone profiles and tropospheric ozone columns from ultraviolet radiances detected by TROPOospheric Monitoring Instrument (TROPOMI) onboard Sentinel 5 Precursor (S—5P) satellite based on the principle of optimal estimation method. We compare our TROPOMI retrievals with global ozonesonde observations, Fourier Transform Spectrometry (FTS) observation at Hefei (117.17°E, 31.7°N) and Global Positioning System (GPS) ozonesonde sensor (GPSO 3 ) ozonesonde profiles at Beijing (116.46°E, 39.80°N). The integrated Tropospheric Ozone Column (TOC) and Stratospheric Ozone Column (SOC) show excellent agreement with validation data. We use the retrieved TOC combining with tropospheric vertical column density (TVCD) of NO 2 and HCHO from TROPOMI to assess the changes of tropospheric ozone during the outbreak of COVID-19 in China. Although NO 2 TVCD decreased by 63%, the retrieved TOC over east China increase by 10% from the 20-day averaged before the lockdown on January 23, 2020 to 20-day averaged after it. Because the production of ozone in winter is controlled by volatile organic compounds (VOCs) indicated by monitored HCHO, which did not present evident change during the lockdown, the production of ozone did not decrease significantly. Besides, the decrease of NO x emission weakened the titration of ozone, causing an increase of ozone.
<p>Abundances of a range of air pollutants can be inferred from satellite UV-Vis spectroscopy measurements by using the unique absorption signatures of gas species. Here, we implemented several spectral fitting methods to retrieve tropospheric NO<sub>2</sub>, SO<sub>2</sub>, and HCHO from the ozone monitoring instrument (OMI), with radiative simulations providing necessary information on the interactions of scattered solar light within the atmosphere. We analyzed the spatial distribution and temporal trends of satellite-observed air pollutants over eastern China during 2005&#8211;2017, especially in heavily polluted regions. We found significant decreasing trends in NO<sub>2</sub> and SO<sub>2</sub> since 2011 over most regions, despite varying temporal features and turning points. In contrast, an overall increasing trend was identified for tropospheric HCHO over these regions in recent years. Furthermore, generalized additive models were implemented to understand the driving forces of air quality trends in China and assess the effectiveness of emission controls. Our results indicated that although meteorological parameters, such as wind, water vapor, solar radiation and temperature, mainly dominated the day-to-day and seasonal fluctuations in air pollutants, anthropogenic emissions played a unique role in the long-term variation in the ambient concentrations of NO<sub>2</sub>, SO<sub>2</sub>, and HCHO in the past 13 years. Generally, recent declines in NO<sub>2</sub> and SO<sub>2</sub> could be attributed to emission reductions due to effective air quality policies, and the opposite trends in HCHO may urge the need to control anthropogenic volatile organic compound (VOC) emissions.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.