The direct cyanomethylation of indoles at the 2- or 3-position was achieved via photoredox catalysis. The versatile nitrile synthon is introduced as a radical generated from bromoacetonitrile, a photocatalyst, and blue LED as a light source. The mechanism of the reaction is explored by determination of the Stern-Volmer quenching constants. By combining photophysical data and mass spectrometry to follow the catalyst decomposition, the catalyst ligands were tuned to enable synthetically useful yields of radical coupling products. A range of indole substrates with alkyl, aryl, halogen, ester, and ether functional groups participate in the reaction, affording products in 16-90% yields. The reaction allows the rapid construction of synthetically useful cyanomethylindoles, products that otherwise require several synthetic steps.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.