Studies were designed to test the hypothesis that Hertwig's epithelial root sheath (HERS) synthesizes and secretes enamel-related proteins that participate in the process of acellular cementum formation. Our experimental strategy was to examine sequential root development of the mouse mandibular first molar in vivo and in long-term organ culture in vitro using serumless, chemically-defined medium. Using anti-amelogenin, anti-enamelin and anti-peptide antibodies, enamel-related antigens were localized within intermediate cementum during HERS differentiation and root formation in vivo. Cap stage molars maintained for periods of up to 31 days in organ culture expressed morphogenesis and cytodifferentiation as identified by tooth crown and initial root, cementum and bone formation. Metabolically-labeled HERS products were analyzed by immunodetection using enamel-related antibodies and one- and two-dimensional SDS gel electrophoresis. A 72 kDa and 26 kDa polypeptide were identified in forming mouse cementum. Both of these root putative cementum proteins yield similar (identical) amino acid compositions; however, both proteins differed from the compositions of either mouse crown enamelin or amelogenin proteins. This approach provides a new and novel in vitro model towards understanding HERS differentiation and functions related to root and bone formation. The data support the hypothesis that HERS cells synthesize polypeptides related to but also different from canonical crown enamel proteins.
The amelogenin protein of developing dental enamel is generally accepted to mediate the regulation of the form and size of the hydroxyapatite crystallites during enamel biomineralization (1). A genetic disorder of enamel development (amelogenesis imperfecta) has been linked to the amelogenin gene AMEL(2-3), and loci regulating enamel thickness and tooth size have been mapped to the human sex chromosomes (4). In the human genome there are two AMEL loci with one copy of the gene on each of the sex chromosomes (AMELX and AMELY), whereas in the mouse only an AMELX locus is present (5). It is presently unknown if human AMELY is transcriptionally active. These observations prompted us to examine specimens of human developing enamel for sexual dimorphism at the protein level. We report here, for the first time, a diagnosis of differences in human enamel proteins which permits the distinction of specimens according to the sex of the individual.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.