We present an atomistic description of the electronic and optical properties of In0.25Ga0.75N/GaN quantum wells. Our analysis accounts for fluctuations of well width, local alloy composition, strain and built-in field fluctuations as well as Coulomb effects. We find a strong hole and much weaker electron wave function localization in InGaN random alloy quantum wells. The presented calculations show that while the electron states are mainly localized by well-width fluctuations, the holes states are already localized by random alloy fluctuations. These localization effects affect significantly the quantum well optical properties, leading to strong inhomogeneous broadening of the lowest interband transition energy. Our results are compared with experimental literature data.
We present a detailed theoretical study of the band gap bowing of wurtzite AlGaN alloys over the full composition range. Our theoretical framework is based on an atomistic tight‐binding model, including local strain and built‐in potential variations due to random alloy fluctuations. We extract a bowing parameter for the band gap of b=0.94 eV, which is in good agreement with experimental data. Our analysis shows that the bowing of the band gap mainly arises from bowing of the conduction band edge; for the composition dependence of the valence band edge energy we find a close to linear behavior. Finally, we investigate the wave function character of the valence band edge as a function of GaN content x. Our analysis reveals an optical polarization switching around x=0.75, which is in the range of reported experimental data.
We present a detailed analysis of wave function localization effects in In x Ga 1−x N alloys and quantum wells. Our work is based on density functional theory to analyze the impact of isolated and clustered In atoms on the wave function localization characteristics in In x Ga 1−x N alloys. We address the electronic structure of In 0.25 Ga 0.25 N/GaN quantum wells by means of an atomistic tight-binding model. Random alloy fluctuations in the quantum well region and well-width fluctuations are explicitly taken into account. The tight-binding model includes strain and built-in field fluctuations arising from the random In distribution. Our density functional theory study reveals increasing hole wave function localization effects when an increasing number of In atoms share the same N atom. We find that these effects are less pronounced for the electrons. Our tight-binding analysis of In 0.25 Ga 0.75 N/GaN quantum wells also reflects this behavior, revealing strong hole localization effects arising from the random In atom distribution. We also show that the excited hole states are strongly localized over an energy range of approximately 50 meV from the top of the valence band. For the quantum wells considered here we observe that well-width fluctuations lead to electron wave function localization effects.
We have investigated the properties and conduction limitations of spray pyrolysis grown, low-cost transparent conducting oxide ZnO thin films doped with indium. We analyze the optical, electrical, and crystallographic properties as functions of In content with a specific focus on postgrowth heat treatment of these thin films at 320 • C in an inert, nitrogen atmosphere, which improves the films electrical properties considerably. The effect was found to be dominated by nitrogen-induced grain-boundary passivation, identified by a combined study using in situ resistance measurement upon annealing, x-ray photoelectron spectroscopy, photoluminescence, and x-ray diffraction studies. We also highlight the chemical mechanism of morphologic and crystallographic changes found in films with high indium content. By optimizing growth conditions according to these findings, ZnO:In with a resistivity as low as 2 × 10 −3 cm, high optical quality (T ≈ 90%), and sheet resistance of 32 / has been obtained without any need for postgrowth treatments.
Single-photon avalanche diode (SPAD) detectors are of significant interest for numerous applications, including light detection and ranging (LIDAR), and quantum technologies such as quantum-key distribution and quantum information processing. Here we present a record low noise-equivalent-power (NEP) for Ge-on-Si SPADs using a pseudo-planar design, showing high detection efficiency in the short-wave infrared; a spectral region which is key for quantum technologies and hugely beneficial for LIDAR. These devices can leverage the benefits of Si avalanche layers, with lower afterpulsing compared to InGaAs/InP, and reduced cost due to Si foundry compatibility. By scaling the SPAD pixels down to 26µm diameter, a step change in performance has been demonstrated, with significantly reduced dark count rates (DCRs), and low jitter (134ps). Ge-on-Si SPADs were fabricated using photolithography techniques and characterised using time-correlated single-photon counting. The DCR reaches as low as kilocount/s at 100K for excess bias up to ~5%. This reduction in DCR enables higher temperature operation; e.g. the DCR of a 26µm diameter pixel at 150 K is approximately equivalent to a 100 µm diameter pixel at 77 K (100s of kilocounts/s). These low values of DCR, coupled with the relatively temperature independent single photon detection efficiencies (SPDE) of ~29% (at 1310nm wavelength) leads to a record low NEP of 7.7×10 −17 WHz −1/2 . This is approximately 2 orders of magnitude lower than previous similarly sized mesa-geometry Ge-on-Si SPADs. This technology can potentially offer a lowcost, Si foundry compatible SPAD operating at short-wave infrared wavelengths, with potential applications in quantum technologies and autonomous vehicle LIDAR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.