We present an atomistic description of the electronic and optical properties of In0.25Ga0.75N/GaN quantum wells. Our analysis accounts for fluctuations of well width, local alloy composition, strain and built-in field fluctuations as well as Coulomb effects. We find a strong hole and much weaker electron wave function localization in InGaN random alloy quantum wells. The presented calculations show that while the electron states are mainly localized by well-width fluctuations, the holes states are already localized by random alloy fluctuations. These localization effects affect significantly the quantum well optical properties, leading to strong inhomogeneous broadening of the lowest interband transition energy. Our results are compared with experimental literature data.
We present a theory of local electric polarization in crystalline solids and apply it to study the case of wurtzite group-III nitrides. We show that a local value of the electric polarization, evaluated at the atomic sites, can be cast in terms of a summation over nearest-neighbor distances and Born effective charges. Within this model, the local polarization shows a direct relation to internal strain and can be expressed in terms of internal strain parameters. The predictions of the present theory show excellent agreement with a formal Berry phase calculation for random distortions of a test-case CuPt-like InGaN alloy and InGaN supercells with randomly placed cations. While the present level of theory is appropriate for highly ionic compounds, such as III-N materials, we show that a more complex model is needed for less ionic materials, such as GaAs, in which the strain dependence of Born effective charges has to be taken into account. Moreover, we provide ab initio parameters for GaN, InN and AlN, including hybrid functional values for the piezoelectric coefficients and the spontaneous polarization, which we use to accurately implement the local theory expressions. In order to calculate the local polarization potential, we also present a point dipole method. This method overcomes several limitations related to discretization and resolution which arise when obtaining the local potential by solving Poisson's equation on an atomic grid. Finally, we perform tight-binding supercell calculations to assess the impact of the local polarization potential arising from alloy fluctuations on the electronic properties of InGaN alloys. In particular, we find that the large upward bowing with composition of the InGaN valence band edge is strongly influenced by local polarization effects. Furthermore, our analysis allows us to extract composition-dependent bowing parameters for the energy gap and valence and conduction band edges. *
The thermal atomic layer deposition (ALD) of copper oxide films from the nonfluorinated yet liquid precursor bis(tri- n -butylphosphane)copper(I)acetylacetonate, [(Bnu3normalP)C2normalu(acac)] , and wet O2 on Ta, TaN, Ru, and SinormalO2 substrates at temperatures of <160°C is reported. Typical temperature-independent growth was observed at least up to 125°C with a growth-per-cycle of ∼0.1Å for the metallic substrates and an ALD window extending down to 100°C for Ru. On SinormalO2 and TaN, the ALD window was observed between 110 and 125°C , with saturated growth shown on TaN still at 135°C . Precursor self-decomposition in a chemical vapor deposition mode led to bimodal growth on Ta, resulting in the parallel formation of continuous films and isolated clusters. This effect was not observed on TaN up to ∼130°C and neither on Ru or SinormalO2 for any processing temperature. The degree of nitridation of the tantalum nitride underlayers considerably influenced the film growth. With excellent adhesion of the ALD films on all substrates studied, the results are a promising basis for Cu seed layer ALD applicable to electrochemical Cu metallization in interconnects of ultralarge-scale integrated circuits.
We present and compare three distinct atomistic models -based on first principles and semiempirical approaches -of the structural and electronic properties of Ge1−xSnx alloys. Density functional theory calculations incorporating Heyd-Scuseria-Ernzerhof (HSE) and modified Becke-Johnson (mBJ) exchange-correlation functionals are used to perform structural relaxation and electronic structure calculations for a series of Ge1−xSnx alloy supercells. Based on HSE calculations, a semi-empirical valence force field (VFF) potential and sp 3 s * tight-binding (TB) Hamiltonian are parametrised. Comparing the HSE, mBJ and TB models, and using the HSE results as a benchmark, we demonstrate that: (i) mBJ calculations provide an accurate first principles description of the electronic structure at reduced computational cost, (ii) the VFF potential is sufficiently accurate to circumvent the requirement to perform first principles structural relaxation, and (iii) TB calculations provide a good quantitative description of the alloy electronic structure in the vicinity of the band edges. Our results also emphasise the importance of Sn-induced band mixing in determining the nature of the conduction band structure of Ge1−xSnx alloys. The theoretical models and benchmark calculations we present inform and enable predictive, computationally efficient and scalable atomistic calculations for disordered alloys and nanostructures. This provides a suitable platform to underpin further theoretical investigations of the properties of this emerging semiconductor alloy.
Access to the full text of the published version may require a subscription. We investigate the degree to which the built-in electric field can be suppressed by employing polarization-matched barriers in III-N quantum well and dot structures grown along the c axis. Our results show that it is possible to take advantage of the opposite contributions to the built-in potential arising from the different possible combinations of wurtzite GaN, InN, and AlN when alloying the materials. We show that, for a fixed bandgap of the dot/well, optimal alloy compositions can be found that minimize the built-in field across the structure. We discuss and study the impact of different material parameters on the results, including the influence of nonlinear effects in the piezoelectric polarization. Structures grown with unstrained barriers and on GaN epilayers are considered, including discussion of the effects of constraints such as strain limits and alloy miscibility. Rights
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.