Restrictions on roaming Until the past century or so, the movement of wild animals was relatively unrestricted, and their travels contributed substantially to ecological processes. As humans have increasingly altered natural habitats, natural animal movements have been restricted. Tucker et al. examined GPS locations for more than 50 species. In general, animal movements were shorter in areas with high human impact, likely owing to changed behaviors and physical limitations. Besides affecting the species themselves, such changes could have wider effects by limiting the movement of nutrients and altering ecological interactions. Science , this issue p. 466
This study reports the effect of daily mean ambient temperature on daily activity and habitat use by the giant anteater (Myrmecophaga tridactyla) in the Pantanal wetlands of Brazil. We equipped 11 giant anteaters with a global position system collar programmed to acquire a location every 10 min for 15 d. A temperature data logger left in the meteorological station at the study site registered data on ambient temperature. Giant anteaters were mainly active in open fields except during the coldest days, when they sought protection inside forests. Giant anteaters also used open habitats for resting but during the hottest or chilliest days they sheltered in forests. In the Pantanal, where temperatures are usually high, giant anteaters were active all night long, but as daily average ambient temperature decreased anteaters began and finished activity progressively earlier and reduced total activity. As a consequence, time spent active at daylight increased progressively and time spent active during the night decreased progressively, probably to allow the anteaters to expose themselves to solar radiation and to avoid heat loss during the night.
This study is the beginning of the first long-term study on cork oak irrigation under field conditions, with a structural-functional approach. Cork oaks are currently facing disturbances affecting cork quality and quantity, jeopardizing the future of the economic sector. There is a need for new production techniques that maximize cork oak growth and vitality. In this study, irrigation was implemented in a new intensive cork oak plantations to test the best irrigation volume. The long-term goal is to improve tree growth with minimum water requirements. A 6 ha intensive plantation was installed in Coruche, Portugal. The experimental plot consisted of a subsurface drip fertigation system, buried 40 cm deep; with five independent irrigation treatments. It was tested four irrigation volumes during the dry period—21 weeks in the summer of 2016—ranging from 1.88 mm to 5.62 mm a week. Information on meteorological conditions, soil moisture profile and leaf stomatal conductance were gathered periodically and dendrometric measurements were performed before and after the treatments. Cork oaks’ structural and functional parameters were associated with irrigation volume Response to irrigation showed an inflection point in treatment 2, corresponding to a water supply of 3.12 mm per week: below the inflection point, stomatal conductance was reduced by 15% and relative diameter growth at the base was reduced by 10%. Stomatal conductance also showed a positive relationship with soil moisture below the irrigation tubes and with plants’ stem diameter. In conclusion, irrigation supply during the period of water stress improved function and structure of cork oaks seedlings under field conditions. These results suggest that irrigation can be a viable alternative to improve cork oak growth in afforestation and reforestation.
The widespread cork oak (Quercus suber L.) mortality and reduced afforestation /regeneration are causing an overall reduction in cork production. To enhance trees’ growth and vitality, afforestation techniques using fertirrigation were tested. The main objective was the promotion of trees’ growth on new dense plantations using minimum water requirements until reaching productive forests. The experimental plot – Irricork – was installed in 2017 in a ≈1 ha stand with 14 years’ age cork oaks summer-fertirrigated since plantation. Four fertirrigation treatments were applied during fertirrigation campaigns. Radial growth, meteorological parameters and fertirrigation volume were measured every 15–30 days over four years. It was observed that weather, tree size, debarking and trees’ intra-competition had a significant effect on radial increments. Fertirrigation significantly enhanced growth during summer drought and decoupled increments from air vapor pressure deficit constraints. There was a linear relationship between trees’ radial increments and fertirrigation volume up to 140 m3 week–1. Above this value, increments were smoother. In conclusion, summer fertirrigation of 140 m3 week–1 efficiently enhanced the radial growth of trees with 50–75 circumference at breast height, under the particular edaphoclimatic conditions of the stand. This study showed to be, therefore, promising in the use of efficient fertirrigation the enhance cork oaks’ radial growth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.