Knockdown of ABCG2 transporters did not abrogate the SP cell response to temozolomide. Upregulation of several other ABC drug transporter genes is proposed to account for this chemoresistance.
Not all cancer cells are born equal. While the great majority of the cells that make up tumours are destined to differentiate, albeit aberrantly, and eventually stop dividing, a handful of cancer cells appear to possess limitless replicative potential. This review presents compelling evidence to suggest that the bulk of malignant cells of most cancers are generated by a rare fraction of stem cell-like cancer cells. These cells, dubbed cancer stem cells, are phenotypically similar to the normal stem cells of the corresponding tissue of origin, but they exhibit dysfunctional patterns of self-renewal and differentiation. Cancer stem cells that are capable of recapitulating brain tumours as xenografts in mice are characterised by defined stem cell markers. These brain tumour stem cells demonstrate enhanced chemoresistance and radioresistance mechanisms compared to non-stem cells in the heterogeneous tumour, which suggest that they may be the likely candidates for tumour progression and recurrence. Indeed, recent work has shown that such aberrant signalling pathways may be targeted in novel anti-cancer therapeutic strategies. The stem cell concept of tumour progression prompts immediate attention to a new paradigm in cancer research with a focus on this minority subset of cells, and the design of novel therapeutic strategies to target these cells that are insignificant within the population of tumour cells, but that are in fact the relevant cells to be destroyed. Key words: Cancer stem cell, CD133, Side population, Serial transplantation
Not all cancer cells are born equal. While the great majority of the cells that make up tumours are destined to differentiate, albeit aberrantly, and eventually stop dividing, a handful of cancer cells appear to possess limitless replicative potential. This review presents compelling evidence to suggest that the bulk of malignant cells of most cancers are generated by a rare fraction of stem cell-like cancer cells. These cells, dubbed cancer stem cells, are phenotypically similar to the normal stem cells of the corresponding tissue of origin, but they exhibit dysfunctional patterns of self-renewal and differentiation. Cancer stem cells that are capable of recapitulating brain tumours as xenografts in mice are characterised by defined stem cell markers. These brain tumour stem cells demonstrate enhanced chemoresistance and radioresistance mechanisms compared to non-stem cells in the heterogeneous tumour, which suggest that they may be the likely candidates for tumour progression and recurrence. Indeed, recent work has shown that such aberrant signalling pathways may be targeted in novel anti-cancer therapeutic strategies. The stem cell concept of tumour progression prompts immediate attention to a new paradigm in cancer research with a focus on this minority subset of cells, and the design of novel therapeutic strategies to target these cells that are insignificant within the population of tumour cells, but that are in fact the relevant cells to be destroyed. Key words: Cancer stem cell, CD133, Side population, Serial transplantation
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.