This work addresses the problem of robot navigation under timed temporal specifications in workspaces cluttered with obstacles. We propose a hybrid control strategy that guarantees the accomplishment of a high-level specification expressed as a timed temporal logic formula, while preserving safety (i.e., obstacle avoidance) of the system. In particular, we utilize a motion controller that achieves safe navigation inside the workspace in predetermined time, thus allowing us to abstract the motion of the agent as a finite timed transition system among certain regions of interest. Next, we employ standard formal verification and convex optimization techniques to derive high-level timed plans that satisfy the agent's specifications. A simulation study illustrates and clarifies the proposed scheme.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.