Multiple sclerosis (MS) is a chronic, inflammatory, demyelinating disease that affects the central nervous system and represents the most common neurological disorder in young adults in the Western hemisphere. There are several well-characterized experimental animal models that allow studying potential mechanisms of MS pathology. While experimental allergic encephalomyelitis is one of the most frequently used models to investigate MS pathology and therapeutic interventions, the cuprizone model reflects a toxic experimental model. Cuprizone-induced demyelination in animals is accepted for studying MS-related lesions and is characterized by degeneration of oligodendrocytes rather than by a direct attack on the myelin sheet. The present article reviews recent data concerning the cuprizone model and its relevance for MS. Particular focus is given to the concordance and difference between human MS patterns (types I-IV lesions) and cuprizone-induced histopathology, including a detailed description of the sensitive brain regions extending the observations to different white and grey matter structures. Similarities between pattern III lesions and cuprizone-induced demyelination and dissimilarities, such as inflamed blood vessels or the presence of CD3+ T cells, are outlined. We also aim to distinguish acute and chronic demyelination under cuprizone including processes such as spontaneous remyelination during acute demyelination. Finally, we point at strain and gender differences in this animal model and highlight the contribution of some growth factors and cytokines during and after cuprizone intoxication, including LIF, IGF-1, and PDGFalpha.
The IkappaB kinase complex IKK is a central component of the signaling cascade that controls NF-kappaB-dependent gene transcription. So far, its function in the brain is largely unknown. Here, we show that IKK is activated in a mouse model of stroke. To investigate the function of IKK in brain ischemia we generated mice that contain a targeted deletion of Ikbkb (which encodes IKK2) in mouse neurons and mice that express a dominant inhibitor of IKK in neurons. In both lines, inhibition of IKK activity markedly reduced infarct size. In contrast, constitutive activation of IKK2 enlarged the infarct size. A selective small-molecule inhibitor of IKK mimicked the effect of genetic IKK inhibition in neurons, reducing the infarct volume and cell death in a therapeutic time window of 4.5 h. These data indicate a key function of IKK in ischemic brain damage and suggest a potential role for IKK inhibitors in stroke therapy.
Amyotrophic lateral sclerosis (ALS) is characterized by the degeneration of motoneurons in the cerebral cortex, brainstem and spinal cord. Neuroinflammation plays an important role in the pathogenesis of ALS and involves the activation of microglia and astrocytes. Intracellular inflammasome complexes are part of the innate immunity as they sense and execute host inflammatory responses. The best characterized component is the NLRP3 inflammasome comprised of the NLR protein NLRP3, the adaptor ASC and pro-caspase 1. The NLRP3 inflammasome is critical for the activation of caspase 1 and the processing and release of IL1β and IL18. In this study, we investigated the expression, activation and co-localization of the NLRP3 inflammasome in the spinal cord of male SOD1(G93A) mice carrying a mutant human superoxide dismutase 1 (SOD1) variant and regarded as an animal model for ALS as well as in post-mortem tissue of ALS patients. NLRP3 and its molecular components as well as IL1β were already detectable in SOD1 mice at a pre-symptomatic stage after 9 weeks and further increased in 14 week old animals. Spinal cord astrocytes were identified as the major cell type expressing NLRP3 components. In human ALS tissue, we also found increased NLRP3, ASC, IL18 and active caspase 1 levels compared to control patients. Our findings suggest that astroglial NLRP3 inflammasome complexes are critically involved in neuroinflammation in ALS.
In recent years, the knowledge of how estrogen interferes with mammalian brain functions and development has broadened substantially. In the adult brain, estrogen is not only involved in the neuroendocrine feedback regulation at the hypothalamic and pituitary level but also in the control of motor and cognitive functions. More recently, estrogen was found to act as a protective factor for neurodegenerative disorders such as Parkinson's and Alzheimer's disease. In contrast to these regulatory and protective functions, estrogen plays a different role during neuronal development. After the demonstration that the estrogen-synthesizing enzyme aromatase and both nuclear estrogen receptors are expressed in many brain areas during ontogeny, it was soon realized that estrogen modulates neuronal differentiation, notably by influencing cell migration, survival and death, and synaptic plasticity of neurons. These effects were initially seen in the classical target area for estrogen, the hypothalamus, but successive studies revealed the neurotrophic potential of estrogen also in other brain regions. The focus of this review will be to summarize estrogen formation and the role of estrogen during mammalian brain development. Moreover, cellular mechanisms involved in these neurotrophic effects will be discussed, giving special emphasis to "nongenomic" estrogen signaling and cross-coupling of estrogen signaling with those of growth factors.
Traumatic brain injury (TBI) and spinal cord injury (SCI) are pathological events that lead to neuropathological conditions which have in consequence the initiation of pro-inflammatory cytokine production. Neuroinflammation plays a key role in the secondary phase of both TBI and SCI after initial cell death. Activation of cytoplasmic inflammasome complexes is regarded as the essential step of neuroinflammation and a key trigger for neuronal death called pyroptosis. Inflammasome complexes are involved in activation of caspase-1 which catalyzes the cleavage of pro-interleukins into their active forms (including interleukin-18 [IL-18] and IL-1β). The focus of this article is to discuss the time-course and regulation of inflammasome assembly and activation during TBI and SCI and their targeting in designing therapeutic approaches. We particularly focus on the inflammasomes NLRP1 and NLRP3 which play a pivotal function during TBI and SCI in the central nervous system (CNS).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.