Macrophages are the most abundant cells within the tumor stroma displaying noticeable plasticity, which allows them to perform several functions within the tumor microenvironment. Tumor-associated macrophages commonly refer to an alternative M2 phenotype, exhibiting anti-inflammatory and pro-tumoral effects. M2 cells are highly versatile and multi-tasking cells that directly influence multiple steps in tumor development, including cancer cell survival, proliferation, stemness, and invasiveness along with angiogenesis and immunosuppression. M2 cells perform these functions through critical interactions with cells related to tumor progression, including Th2 cells, cancer-associated fibroblasts, cancer cells, regulatory T cells (Tregs), and myeloid-derived suppressor cells. M2 cells also have negative cross-talks with tumor suppressor cells, including cytotoxic T cells and natural killer cells. Programed death-1 (PD-1) is one of the key receptors expressed in M2 cells that, upon interaction with its ligand PD-L1, plays cardinal roles for induction of immune evasion in cancer cells. In addition, M2 cells can neutralize the effects of the pro-inflammatory and anti-tumor M1 phenotype. Classically activated M1 cells express high levels of major histocompatibility complex molecules, and the cells are strong killers of cancer cells. Therefore, orchestrating M2 reprogramming toward an M1 phenotype would offer a promising approach for reversing the fate of tumor and promoting cancer regression. Macrophage switching toward an anti-inflammatory M1 phenotype could be used as an adjuvant with other approaches, including radiotherapy and immune checkpoint blockades, such as anti-PD-L1/PD-1 strategies.
Traumatic brain injury (TBI) and spinal cord injury (SCI) are pathological events that lead to neuropathological conditions which have in consequence the initiation of pro-inflammatory cytokine production. Neuroinflammation plays a key role in the secondary phase of both TBI and SCI after initial cell death. Activation of cytoplasmic inflammasome complexes is regarded as the essential step of neuroinflammation and a key trigger for neuronal death called pyroptosis. Inflammasome complexes are involved in activation of caspase-1 which catalyzes the cleavage of pro-interleukins into their active forms (including interleukin-18 [IL-18] and IL-1β). The focus of this article is to discuss the time-course and regulation of inflammasome assembly and activation during TBI and SCI and their targeting in designing therapeutic approaches. We particularly focus on the inflammasomes NLRP1 and NLRP3 which play a pivotal function during TBI and SCI in the central nervous system (CNS).
Cancer is the second cause of death worldwide. Chemotherapy and radiotherapy are the most common modalities for the treatment of cancer. Experimental studies have shown that inflammation plays a central role in tumor resistance and the incidence of several side effects following both chemotherapy and radiotherapy. Inflammation resulting from radiotherapy and chemotherapy is responsible for adverse events such as dermatitis, mucositis, pneumonitis, fibrosis, and bone marrow toxicity. Chronic inflammation may also lead to the development of second cancer during years after treatment. A number of anti-inflammatory drugs such as nonsteroidal antiinflammatory agents have been proposed to alleviate chronic inflammatory reactions after radiotherapy or chemotherapy. Curcumin is a well-documented herbal antiinflammatory agents. Studies have proposed that curcumin can help management of inflammation during and after radiotherapy and chemotherapy. Curcumin targets various inflammatory mediators such as cyclooxygenase-2, inducible nitric oxide synthase, and nuclear factor κB (NF-κB), thereby attenuating the release of proinflammatory and profibrotic cytokines, and suppressing chronic production of free radicals, which culminates in the amelioration of tissue toxicity. Through modulation of NF-κB and its downstream signaling cascade, curcumin can also reduce angiogenesis, tumor growth, and metastasis. Low toxicity of curcumin is linked to its cytoprotective effects in normal tissues. This protective action along with the capacity of this phytochemical to sensitize tumor cells to radiotherapy and chemotherapy makes it a potential candidate for use as an adjuvant in cancer therapy. There is also evidence from clinical trials suggesting the potential utility of curcumin for acute inflammatory reactions during radiotherapy such as dermatitis and mucositis. K E Y W O R D S cancer, chemotherapy, curcumin, inflammation, radiotherapy J Cell Physiol. 2019;234:5728-5740. wileyonlinelibrary.com/journal/jcp 5728 |
Colorectal cancer (CRC) is the third most prevalent cancer in the world. There are many risk factors involved in CRC. According to recent findings, the tumor microenvironment and feces samples of patients with CRC are enriched by Fusobacterium nucleatum. Thus, F. nucleatum is proposed as one of the risk factors in the initiation and progression of CRC. The most important mechanisms of Fusobacterium nucleatum involved in CRC carcinogenesis are immune modulation (such as increasing myeloid‐derived suppressor cells and inhibitory receptors of natural killer cells), virulence factors (such as FadA and Fap2), microRNAs (such as miR‐21), and bacteria metabolism. The aim of this review was to evaluate the mechanisms underlying the action of F. nucleatum in CRC.
It is believed that oxidative stress is a key causing factor of liver damage induced by a variety of agents, and it is a major contributing factor in almost all conditions compromising liver function, including ischemia-reperfusion injury (IRI), nonalcoholic fatty liver disease (NAFLD), nonalcoholic steatohepatitis (NASH), liver fibrosis, liver cirrhosis, and hepatocellular carcinoma (HCC). Liver is the organ that high concentration of melatonin (N-acetyl-5-methoxytryptamine) accumulates, and it is the sole organ where circulating melatonin is metabolized. Melatonin is one of the best antioxidants that protects liver, and its metabolites also have antioxidative function. Melatonin exerts its antioxidative function directly through its radical scavenging ability and indirectly through stimulation of antioxidant enzymes. The antioxidative response from melatonin in liver affects from various factors, including its dosage, route, time and duration of administration, the type of oxidative-induced agent and species aging. This indoleamine is also an effective and promising antioxidative choice for targeting liver IRI, NAFLD, NASH, fibrosis, cirrhosis, and HCC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.