In core regions of ischemic stroke, disruption of blood flow causes breakdown of ionic gradients and, ultimately, calcium overload and cell death. In the surrounding penumbra, cells may recover upon reperfusion, but recovery is hampered by additional metabolic demands imposed by peri-infarct depolarizations (PIDs). There is evidence that sodium influx drives PIDs, but no data exist on PID-related sodium accumulations in vivo. Here, we found that PIDs in mouse neocortex are associated with propagating sodium elevations in neurons and astrocytes. Similar transient sodium elevations were induced in acute tissue slices by brief chemical ischemia. Blocking NMDA-receptors dampened sodium and accompanying calcium loads of neurons in tissue slices, while inhibiting glutamate transport diminished sodium influx into astrocytes, but amplified neuronal sodium loads. In both cell types, inhibition of sodium/calcium exchange (NCX) increased sodium transients. Blocking NCX also significantly reduced calcium transients, a result confirmed in vivo. Our study provides the first quantitative data on sodium elevations in peri-infarct regions in vivo. They suggest that sodium influx drives reversal of NCX, triggering a massive secondary calcium elevation while promoting export of sodium. Reported neuroprotective effects of NCX activity in stroke models might thus be related to its dampening of ischemia-induced sodium loading.
Vascular cognitive impairment is the second most common form of dementia. The pathogenic pathways leading to vascular cognitive impairment remain unclear but clinical and experimental data have shown that chronic reactive astrogliosis occurs within white matter lesions, indicating that a sustained pro-inflammatory environment affecting the white matter may contribute towards disease progression. To model vascular cognitive impairment, we induced prolonged mild cerebral hypoperfusion in mice by bilateral common carotid artery stenosis. This chronic hypoperfusion resulted in reactive gliosis of astrocytes and microglia within white matter tracts, demyelination and axonal degeneration, consecutive spatial memory deficits, and loss of white matter integrity, as measured by ultra high-field magnetic resonance diffusion tensor imaging. White matter astrogliosis was accompanied by activation of the pro-inflammatory transcription factor nuclear factor (NF)-kB in reactive astrocytes. Using mice expressing a dominant negative inhibitor of NF-kB under the control of the astrocyte-specific glial fibrillary acid protein (GFAP) promoter (GFAP-IkBα-dn), we found that transgenic inhibition of astroglial NF-kB signaling ameliorated gliosis and axonal loss, maintained white matter structural integrity, and preserved memory function. Collectively, our results imply that pro-inflammatory changes in white matter astrocytes may represent an important detrimental component in the pathogenesis of vascular cognitive impairment, and that targeting these pathways may lead to novel therapeutic strategies.Electronic supplementary materialThe online version of this article (doi:10.1186/s40478-016-0350-3) contains supplementary material, which is available to authorized users.
Astrocytes support normal brain function, but may also contribute to neurodegeneration when they become reactive under pathological conditions such as stroke. However, the molecular underpinnings of this context‐dependent interplay between beneficial and detrimental properties in reactive astrogliosis have remained incompletely understood. Therefore, using the RiboTag technique, we immunopurified translating mRNAs specifically from astrocytes 72 hr after transient middle cerebral artery occlusion in mice (tMCAO), thereby generating a stroke‐specific astroglial translatome database. We found that compared to control brains, reactive astrocytes after tMCAO show an enrichment of transcripts linked to the A2 phenotype, which has been associated with neuroprotection. However, we found that astrocytes also upregulate a large number of potentially neurotoxic genes. In total, we identified the differential expression of 1,003 genes and 38 transcription factors, of which Stat3, Sp1, and Spi1 were the most prominent. To further explore the effects of Stat3‐mediated pathways on stroke pathogenesis, we subjected mice with an astrocyte‐specific conditional deletion of Stat3 to tMCAO, and found that these mice have reduced stroke volume and improved motor outcome 72 hr after focal ischemia. Taken together, our study extends the emerging database of novel astrocyte‐specific targets for stroke therapy, and supports the role of astrocytes as critical safeguards of brain function in health and disease.
Stroke is one of the leading causes of death and long-term disability. In the penumbra, that is, the area surrounding the infarct core, peri-infarct depolarizations (PIDs) are accompanied by strong intracellular calcium elevations in astrocytes and neurons, thereby negatively affecting infarct size and clinical outcome. The dynamics of PIDs and the cellular pathways that are involved during PID formation and progression remain incompletely understood. We have previously shown that inositol triphosphate-gated calcium release from internal stores is a major component of PID-related astroglial calcium signals, but whether external calcium influx through membrane-localized channels also contributes to PIDs has remained unclear. In this study, we investigated the role of two astroglial membrane channels, transient receptor vanilloid 4 (TRPV4) channel and aquaporin-4 (AQP4). We combined in vivo multiphoton microscopy, electrophysiology as well as laser speckle contrast imaging with the middle cerebral artery occlusion stroke model. Using knockout mice and pharmacological inhibitors, we found that TRPV4 channels contribute to calcium influx into astrocytes and neurons and subsequent extracellular glutamate accumulation during PIDs. AQP4 neither influenced PID-related calcium signals nor PID-related edema of astrocyte somata. Both channels did not alter the dynamics, frequency and cerebrovascular response of PIDs in the penumbra. These data indicate that TRPV4 channels may represent a potential target to ameliorate the PID-induced calcium overload of astrocytes and neurons during acute stroke.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.