Mitochondria are critical for cellular ATP production; however, recent studies suggest that these organelles fulfill a much broader range of tasks. For example, they are involved in the regulation of cytosolic Ca 2+ levels, intracellular pH and apoptosis, and are the major source of reactive oxygen species (ROS). Various reactive molecules that originate from mitochondria, such as ROS, are critical in pathological events, such as ischemia, as well as in physiological events such as long-term potentiation, neuronal-vascular coupling and neuronal-glial interactions. Due to their key roles in the regulation of several cellular functions, the dysfunction of mitochondria may be critical in various brain disorders. There has been increasing interest in the development of tools that modulate mitochondrial function, and the refinement of techniques that allow for real time monitoring of mitochondria, particularly within their intact cellular environment. Innovative imaging techniques are especially powerful since they allow for mitochondrial visualization at high resolution, tracking of mitochondrial structures and optical real time monitoring of parameters of mitochondrial function. Among the techniques discussed are the uses of classic imaging techniques such as rhodamine-123, the highly advanced semi-conductor nanoparticles (quantum dots), and wide field microscopy as well as high-resolution multi-photon imaging. We have highlighted the use of these techniques to study mitochondrial function in brain tissue and have included studies from our laboratories in which these techniques have been successfully applied.
Recent studies have revealed a surprising degree of functional specialization in rodent visual cortex. Anatomically, suggestions have been made about the existence of hierarchical pathways with similarities to the ventral and dorsal pathways in primates. Here we aimed to characterize some important functional properties in part of the supposed "ventral" pathway in rats. We investigated the functional properties along a progression of five visual areas in awake rats, from primary visual cortex (V1) over lateromedial (LM), latero-intermediate (LI), and laterolateral (LL) areas up to the newly found lateral occipito-temporal cortex (TO). Response latency increased Ͼ20 ms from areas V1/LM/LI to areas LL and TO. Orientation and direction selectivity for the used grating patterns increased gradually from V1 to TO. Overall responsiveness and selectivity to shape stimuli decreased from V1 to TO and was increasingly dependent upon shape motion. Neural similarity for shapes could be accounted for by a simple computational model in V1, but not in the other areas. Across areas, we find a gradual change in which stimulus pairs are most discriminable. Finally, tolerance to position changes increased toward TO. These findings provide unique information about possible commonalities and differences between rodents and primates in hierarchical cortical processing.high-level vision; population coding; position tolerance; rodent research; single-unit recordings MONKEYS HAVE BEEN the preferred animal model for vision.
Vascular cognitive impairment is the second most common form of dementia. The pathogenic pathways leading to vascular cognitive impairment remain unclear but clinical and experimental data have shown that chronic reactive astrogliosis occurs within white matter lesions, indicating that a sustained pro-inflammatory environment affecting the white matter may contribute towards disease progression. To model vascular cognitive impairment, we induced prolonged mild cerebral hypoperfusion in mice by bilateral common carotid artery stenosis. This chronic hypoperfusion resulted in reactive gliosis of astrocytes and microglia within white matter tracts, demyelination and axonal degeneration, consecutive spatial memory deficits, and loss of white matter integrity, as measured by ultra high-field magnetic resonance diffusion tensor imaging. White matter astrogliosis was accompanied by activation of the pro-inflammatory transcription factor nuclear factor (NF)-kB in reactive astrocytes. Using mice expressing a dominant negative inhibitor of NF-kB under the control of the astrocyte-specific glial fibrillary acid protein (GFAP) promoter (GFAP-IkBα-dn), we found that transgenic inhibition of astroglial NF-kB signaling ameliorated gliosis and axonal loss, maintained white matter structural integrity, and preserved memory function. Collectively, our results imply that pro-inflammatory changes in white matter astrocytes may represent an important detrimental component in the pathogenesis of vascular cognitive impairment, and that targeting these pathways may lead to novel therapeutic strategies.Electronic supplementary materialThe online version of this article (doi:10.1186/s40478-016-0350-3) contains supplementary material, which is available to authorized users.
Rett syndrome is a neurodevelopmental disorder caused by mutations in the X-chromosomal MECP2 gene encoding for the transcriptional regulator methyl CpG binding protein 2 (MeCP2). Rett patients suffer from episodic respiratory irregularities and reduced arterial oxygen levels. To elucidate whether such intermittent hypoxic episodes induce adaptation/preconditioning of the hypoxia-vulnerable hippocampal network, we analyzed its responses to severe hypoxia in adult Rett mice. The occurrence of hypoxia-induced spreading depression (HSD)--an experimental model for ischemic stroke--was hastened in Mecp2-/y males. The extracellular K+ rise during HSD was attenuated in Mecp2-/y males and the input resistance of CA1 pyramidal neurons decreased less before HSD onset. CA1 pyramidal neurons were smaller and more densely packed, but the cell swelling during HSD was unaffected. The intrinsic optical signal and the propagation of HSD were similar among the different genotypes. Basal synaptic function was intact, but Mecp2-/y males showed reduced paired-pulse facilitation and higher field potential/fiber volley ratios, but no increased seizure susceptibility. Synaptic failure during hypoxia was complete in all genotypes and the final degree of posthypoxic synaptic recovery indistinguishable. Cellular ATP content was normal in Mecp2-/y males, but their hematocrit was increased as was HIF-1alpha expression throughout the brain. This is the first study showing that in Rett syndrome, the susceptibility of telencephalic neuronal networks to hypoxia is increased; the underlying molecular mechanisms apparently involve disturbed K+ channel function. Such an increase in hypoxia susceptibility may potentially contribute to the vulnerability of male Rett patients who are either not viable or severely disabled.
Gerich, Florian J., Sebastian Hepp, Irmelin Probst, and Michael Mü ller. Mitochondrial inhibition prior to oxygen-withdrawal facilitates the occurrence of hypoxia-induced spreading depression in rat hippocampal slices. J Neurophysiol 96: 492-504, 2006. First published April 12, 2006 doi:10.1152/jn.01015.2005. Oxygen withdrawal blocks mitochondrial respiration. In rat hippocampal slices, this triggers a massive depolarization of CA1 neurons and a negative shift of the extracellular DC potential, the characteristic sign of hypoxia-induced spreading depression (HSD). To unveil the contribution of mitochondria to the sensing of hypoxia and the ignition of HSD, we modified mitochondrial function. Mitochondrial uncoupling by carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone (FCCP, 1 M) prior to hypoxia hastened the onset and shortened the duration of HSD. Blocking mitochondrial ATP synthesis by oligomycin (10 g/ml) was without effect. Inhibition of mitochondrial respiration by rotenone (20 M), diphenyleneiodonium (25 M), or antimycin A (20 M) also hastened HSD onset and shortened HSD duration. 3-nitropropionic acid (1 mM) increased HSD duration. Cyanide (100 M) hastened HSD onset and increased HSD duration. At higher concentrations, cyanide (1 mM), azide (2 mM), and FCCP (10 M) triggered SD episodes on their own. Compared with control HSD, the spatial extent of the intrinsic optical signals of cyanide-and azideinduced SDs was more pronounced. Monitoring NADH (nicotinamide adenine dinucleotide) and FAD (flavin adenine dinucleotide) autofluorescence and mitochondrial membrane potential verified the mitochondrial targeting by the drugs used. Except 1 mM cyanide, no treatment reduced cellular ATP levels severely and no correlation was found between ATP, NADH, or FAD levels and the time to HSD onset. Therefore ATP depletion or a cytosolic reducing shift due to NADH/FADH 2 accumulation cannot serve as a general explanation for the hastening of HSD onset on mitochondrial inhibition. Additional redox couples (glutathione) or events downstream of the mitochondrial depolarization need to be considered.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.