By analogy to drug dependence, it has been speculated that the underlying pathology in pathological gambling is a reduction in the sensitivity of the reward system. Studying pathological gamblers and controls during a guessing game using functional magnetic resonance imaging, we observed a reduction of ventral striatal and ventromedial prefrontal activation in the pathological gamblers that was negatively correlated with gambling severity, linking hypoactivation of these areas to disease severity.
Background: The "glymphatic system" (GS), a brain-wide network of cerebrospinal fluid microcirculation, supplies a pathway through and out of the central nervous system (CNS); malfunction of the system is implicated in a variety of neurological disorders. In this exploratory study, we analyzed the potential of a new imaging approach that we coined delayed T2-weighted gadolinium-enhanced imaging to visualize the GS in vivo. Methods: Heavily T2-weighted fluid-attenuated inversion recovery (hT2w-FLAIR) magnetic resonance imaging was obtained before, and 3 hours and 24 hours after intravenous gadolinium-based contrast agent (GBCA) application in 33 neurologically healthy patients and 7 patients with an impaired blood-brain barrier (BBB) due to cerebral metastases. Signal intensity (SI) was determined in various cerebral fluid spaces, and white matter hyperintensities were quantified by applying the Fazekas scoring system. Findings: Delayed hT2w-FLAIR showed GBCA entry into the CNS via the choroid plexus and the ciliary body, with GBCA drainage along perineural sheaths of cranial nerves and along perivascular spaces of penetrating cortical arteries. In all patients and all sites, a significant SI increase was found for the 3 hours and 24 hours time points compared with baseline. Although no significant difference in SI was found between neurologically healthy patients and patients with an impaired BBB, a significant positive correlation between Fazekas scoring system and SI increase in the perivascular spaces 3 hours post injection was shown. Interpretation: Delayed T2-weighted gadolinium-enhanced imaging can visualize the GBCA pathway into and through the GS. Presence of GBCAs within the GS might be regarded as part of the natural excretion process and should not be mixed up with gadolinium deposition. Rather, the correlation found between deep white matter hyperintensities, an imaging sign of vascular dementia, and GS functioning demonstrated feasibility to exploit the pathway of GBCAs through the GS for diagnostic purposes.
Rett syndrome is a neurodevelopmental disorder caused by mutations in the X-chromosomal MECP2 gene encoding for the transcriptional regulator methyl CpG binding protein 2 (MeCP2). Rett patients suffer from episodic respiratory irregularities and reduced arterial oxygen levels. To elucidate whether such intermittent hypoxic episodes induce adaptation/preconditioning of the hypoxia-vulnerable hippocampal network, we analyzed its responses to severe hypoxia in adult Rett mice. The occurrence of hypoxia-induced spreading depression (HSD)--an experimental model for ischemic stroke--was hastened in Mecp2-/y males. The extracellular K+ rise during HSD was attenuated in Mecp2-/y males and the input resistance of CA1 pyramidal neurons decreased less before HSD onset. CA1 pyramidal neurons were smaller and more densely packed, but the cell swelling during HSD was unaffected. The intrinsic optical signal and the propagation of HSD were similar among the different genotypes. Basal synaptic function was intact, but Mecp2-/y males showed reduced paired-pulse facilitation and higher field potential/fiber volley ratios, but no increased seizure susceptibility. Synaptic failure during hypoxia was complete in all genotypes and the final degree of posthypoxic synaptic recovery indistinguishable. Cellular ATP content was normal in Mecp2-/y males, but their hematocrit was increased as was HIF-1alpha expression throughout the brain. This is the first study showing that in Rett syndrome, the susceptibility of telencephalic neuronal networks to hypoxia is increased; the underlying molecular mechanisms apparently involve disturbed K+ channel function. Such an increase in hypoxia susceptibility may potentially contribute to the vulnerability of male Rett patients who are either not viable or severely disabled.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.