The impact of the CYP2C9 polymorphism on the pharmacokinetics of orally administered Δ9-tetrahydrocannabinol (THC) was studied in 43 healthy volunteers. THC pharmacokinetics did not differ by CYP2C9*2 allele status. However, the median area under the curve of THC was threefold higher and that of 11-nor-9-carboxy-9-tetrahydrocannabinol was 70% lower in CYP2C9*3/*3 homozygotes than in CYP2C9*1/*1 homozygotes. CYP2C9*3 carriers also showed a trend toward increased sedation following administration of THC. Therefore, the CYP2C9*3 variant may influence both the therapeutic and adverse effects of THC.
Genetic variation in the pharmacokinetics of metoprolol and torsemide due to polymorphisms in CYP2D6, CYP2C9, and OATP1B1 has been extensively studied. However, it is still unknown how much of the variation in pharmacokinetics of these two clinically important drugs in total is due to genetic factors. Metoprolol and torsemide were intravenously administered to 44 monozygotic and 14 dizygotic twin pairs. Metoprolol area under the curve (AUC) varied 4.7-fold and torsemide AUC 3.5-fold. A very high fraction of AUC variations, 91% of metoprolol and 86% of torsemide, were found to be due to additive genetic effects. However, known genetic variants of CYP2D6, -2C9, and OATP1B1 explained only 39%, 2%, and 39% of that variation, respectively. Comparable results for genetically explained variation in pharmacokinetics and pharmacodynamics have been found for other substrates of these enzymes earlier. These findings indicate that a substantial fraction of the heritable variability in the pharmacokinetics of metoprolol and torsemide remains to be elucidated.
Heritability of caffeine pharmacokinetics and cytochrome P450 1A2 (CYP1A2) activity is controversial. Here, we analyzed the pharmacokinetics of caffeine, an in vivo probe drug for CYP1A2 and arylamine N-acetyltransferase 2 (NAT2) activity, in monozygotic (MZ) and dizygotic (DZ) twins. In the entire group, common and unique environmental effects explained most variation in caffeine area under the curve (AUC). Apparently, smoking and hormonal contraceptives masked the genetic effects on CYP1A2 activity. However, when excluding smokers and users of hormonal contraceptives, 89% of caffeine AUC variation was due to genetic effects and, even in the entire group, 8% of caffeine AUC variation could be explained by a CYP1A1/1A2 promotor polymorphism (rs2470893). In contrast, nearly all of the variations (99%) of NAT2 activity were explained by genetic effects. This study illustrates two very different situations in pharmacogenetics from an almost exclusively genetic determination of NAT2 activity with no environmental modulation to only moderate genetic effects on CYP1A2 activity with strong environmental modulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.